一次函數(shù)上的增函數(shù),,已知.
(1)求;
(2)若單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,有最大值,求實(shí)數(shù)的值.

(1) ;(2) 的取值范圍為;(3) .

解析試題分析:(1)利用待定系數(shù)法設(shè),,,解得(不合題意舍去),
;
(2)由(1)有,根據(jù)二次函數(shù)的性質(zhì),當(dāng)單調(diào)遞增,則對稱軸,解得;
(3)分情況討論,考慮對稱軸的位置,利用單調(diào)性求最值,①當(dāng)時,即
,解得,符合題意;②當(dāng)時,即
,解得,符合題意;由①②可得.
試題解析:(1)∵上的增函數(shù),∴設(shè)     1分

,                                   3分
解得(不合題意舍去)              5分
                                    6分
(2)     7分
對稱軸,根據(jù)題意可得,             8分
解得
的取值范圍為                                9分
(3)①當(dāng)時,即
,解得,符合題意;      11分
②當(dāng)時,即
,解得,符合題意;        13分
由①②可得                              14分
考點(diǎn):本題考查函數(shù)的解析式求法,二次函數(shù)的單調(diào)性和最值性,分類討論思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元).當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+-1450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式.
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2bxc(bc∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時,f(x)≤(xc)2;
(2)若對滿足題設(shè)條件的任意bc,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定rh為何值時該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為加快旅游業(yè)的發(fā)展,新余市2013年面向國內(nèi)發(fā)行總量為200萬張的“仙女湖之旅”優(yōu)惠卡,向省外人士發(fā)行的是金卡,向省內(nèi)人士發(fā)行的是銀卡.某旅游公司組織了一個有36名游客的旅游團(tuán)到新余仙女湖旅游,其中是省外游客,其余是省內(nèi)游客.在省外游客中有持金卡,在省內(nèi)游客中有持銀卡.(1)在該團(tuán)中隨機(jī)采訪2名游客,求恰有1人持銀卡的概率;
(2)在該團(tuán)中隨機(jī)采訪2名游客,求其中持金卡與持銀卡人數(shù)相等概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市對排污水進(jìn)行綜合治理,征收污水處理費(fèi),系統(tǒng)對各廠一個月內(nèi)排出的污水量噸收取的污水處理費(fèi)元,運(yùn)行程序如下所示:請寫出y與m的函數(shù)關(guān)系,并求排放污水150噸的污水處理費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某跨國飲料公司對全世界所有人均GDP(即人均純收入)在0.5—8千美元的地區(qū)銷售,該公司M飲料的銷售情況的調(diào)查中發(fā)現(xiàn):人均GDP處在中等的地區(qū)對該飲料的銷售量最多,然后向兩邊遞減.
(1)下列幾個模擬函數(shù)中(x表示人均GDP,單位:千美元;y表示年人均M飲料的銷量,單位:升),用哪個來描述人均,飲料銷量與地區(qū)的人均GDP的關(guān)系更合適?說明理由.

A. B. C. D.
(2)若人均GDP為1千美元時,年人均M飲料的銷量為2升;人均GDP為4千美元時,年人均M飲料的銷量為5升;把你所選的模擬函數(shù)求出來.;
(3)因為M飲料在N國被檢測出殺蟲劑的含量超標(biāo),受此事件影響,M飲料在人均GDP不高于3千美元的地區(qū)銷量下降5%,不低于6千美元的地區(qū)銷量下降5%,其他地區(qū)的銷量下降10%,根據(jù)(2)所求出的模擬函數(shù),求在各個地區(qū)中,年人均M飲料的銷量最多為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域為集合.
(1)若函數(shù)的定義域也為集合,的值域為,求
(2)已知,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價到元.公司擬投入萬元作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入萬元作為浮動宣傳費(fèi)用.試問:當(dāng)該商品明年的銷售量至少應(yīng)達(dá)到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

同步練習(xí)冊答案