7.求函數(shù)y=$\frac{1}{3}$x3-x的單調(diào)區(qū)間及極值.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解:y′=x2-1=(x+1)(x-1),
令y′>0,解得:x>1或x<-1,
令y′<0,解得:-1<x<1,
∴函數(shù)在(-∞,-1)遞增,在(-1,1)遞減,在(1,+∞)遞增,
∴函數(shù)的極大值是$\frac{2}{3}$,函數(shù)的極小值是-$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC的三個(gè)內(nèi)角A,B,C成等差數(shù)列,a,b,c分別是其所對(duì)的邊,若a=1,b=$\sqrt{3}$,則角A的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求f(x)=$\frac{1}{2}$x2-lnx的單調(diào)增區(qū)間是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一物體在力F(x)=$\left\{\begin{array}{l}{10,0≤x≤2}\\{3x+4,x>2}\end{array}\right.$(單位:N)的作用下沿與力F(x)相同的方向運(yùn)動(dòng)了4米,力F(x)做功為( 。
A.44 JB.46 JC.48 JD.50 J

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列函數(shù)的極值:
(1)y=x3-3x2+7;
(2)y=x-ln(1+x);
(3)y=x2e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在菱形ABCD中,∠DAB=60°,E是AB的中點(diǎn),MA⊥平面ABCD,且在矩形ADNM中,AD=2,AM=3.
(1)求證:AC⊥BN;
(2)求證:AN∥平面MEC;
(3)求二面角M-BC-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.y=ln(sin(2x+$\frac{π}{3}$))的定義域?yàn)椋╧π-$\frac{π}{6}$,kπ+$\frac{π}{3}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)p:函數(shù)f(x)=logax(a>0且a≠1)在(0,+∞)上單調(diào)遞增;
q:關(guān)于x的不等式x2+x+a>0恒成立.
若p或q為真命題,¬p或¬q也為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知(1+x)n的展開式中第3項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為2048.

查看答案和解析>>

同步練習(xí)冊(cè)答案