【題目】己知函數(shù)是定義域為的奇函數(shù).
(1)求實數(shù)的值;
(2)若,不等式在上恒成立,求實數(shù)的取值范圍;
(3)若,且函數(shù)在上最小值為,求的值.
【答案】(1)0(2)(3)2.
【解析】
(1)是定義域為的奇函數(shù),由,得到的值;(2)根據(jù)得到的范圍,從而得到的單調(diào)性,結(jié)合的奇偶性,得到將不等式轉(zhuǎn)化為在上恒成立,通過得到的范圍;(3)由得到,從而得到解析式,令,得到,動軸定區(qū)間分類討論,根據(jù)最小值為,得到的值.
(1)因為是定義域為的奇函數(shù),所以,所以,所以,經(jīng)檢驗,當(dāng)時,為上的奇函數(shù)
(2)由(1)知:,
因為,所以,
又且,所以,
所以是.上的單調(diào)遞減函數(shù),
又是定義域為的奇函數(shù),
所以,
即在上恒成立,
所以,
即,
所以實數(shù)的取值范圍為
(3)因為,所以,
解得或(舍去),
所以,
令,
則,
因為在R上為增函數(shù),且,
所以,
因為在上最小值為,
所以在上的最小值為,
因為的對稱軸為,
所以當(dāng)時,
,解得或(舍去),
當(dāng)時,,解得(舍去),
綜上可知:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點為極點,x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;
Ⅱ若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月18日-27日,第七屆世界軍人運動會在湖北武漢舉辦,中國代表團共獲得133金64銀42銅,共239枚獎牌.為了調(diào)查各國參賽人員對主辦方的滿意程度,研究人員隨機抽取了500名參賽運動員進行調(diào)查,所得數(shù)據(jù)如下所示,現(xiàn)有如下說法:①在參與調(diào)查的500名運動員中任取1人,抽到對主辦方表示滿意的男性運動員的概率為;②在犯錯誤的概率不超過1%的前提下可以認(rèn)為“是否對主辦方表示滿意與運動員的性別有關(guān)”;③沒有99.9%的把握認(rèn)為“是否對主辦方表示滿意與運動員的性別有關(guān)”;則正確命題的個數(shù)為( )附:
男性運動員 | 女性運動員 | |||||
對主辦方表示滿意 | 200 | 220 | ||||
對主辦方表示不滿意 | 50 | 30 | ||||
0.100 | 0.050 | 0.010 | 0.001 | |||
k | 2.706 | 3.841 | 6.635 | 10.828 | ||
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認(rèn)為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓C經(jīng)過,,()三點,M是線段上的動點,,是過點且互相垂直的兩條直線,其中交y軸于點E,交圓C于P、Q兩點.
(1)若,求直線的方程;
(2)若是使恒成立的最小正整數(shù)
①求的值; ②求三角形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A. 若為真命題,則為真命題 B. 若則恒成立
C. 命題“”的否定是“” D. 命題“若則”的逆否命題是“若,則”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點在x軸上的橢圓C:經(jīng)過點,橢圓C的離心率為.,是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點M為的中點(O為坐標(biāo)原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數(shù),使得;若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)滿足,且時有,甲、乙、丙、丁四位同學(xué)有下列結(jié)論:
甲:;
乙:函數(shù)在上是增函數(shù);
丙:函數(shù)關(guān)于直線對稱;
。喝,則關(guān)于的方程在上所有根之和為.
其中正確的是( )
A.乙、丁B.乙、丙C.甲、乙、丙D.乙、丙、丁
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com