x>0,求y=4+2x+
3
x
的最小值,并求x的值.
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用基本不等式的性質(zhì)即可得出.
解答: 解:∵x>0,
∴y=4+2x+
3
x
≥4+2
2x•
3
x
=4+2
6
,
當且僅當x=
6
2
時取等號.
∴y=4+2x+
3
x
的最小值為4+2
6
,此時x=
6
2
點評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

集合A={y|y=ex,x∈R},B={x∈Z|log6(x+3)<1},則A∩B=( 。
A、{x|0<x<3}
B、{1,2}
C、{-2,-1,0,1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)滿足f(2x)=x2-2ax+a2-1,且f(x)在[2a-1,2 a2-2a+2]上的值域為[-1,0],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的面積為
3
2
,且b=2,c=
3
,則角A等于(  )
A、30°
B、60°
C、30°或60°
D、60°或120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,c=4,a=2,C=45°,則sinA等于( 。
A、
1
2
B、
2
2
C、
2
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=(
1
2
x在(-∞,+∞)內(nèi)是減函數(shù).
 
.(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)0<a<b<1,則下列不等式成立的是(  )
A、a3>b3
B、
1
a
1
b
C、a2>b2
D、0<b-a<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=log
1
2
(x-x2)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且a=1,b=2,cosC=
1
4
,
(1)求c和sinB的值;
(2)求△ABC的面積.

查看答案和解析>>

同步練習冊答案