若⊙C過(1,0),(3,0)兩點(diǎn)且與y軸相切,則⊙C的方程為
 
考點(diǎn):圓的標(biāo)準(zhǔn)方程,圓的一般方程
專題:直線與圓
分析:設(shè)圓心C(a,b),由已知得
(a-1)2+b2
=
(a-3)2+b2
(a-1)2+b2
=|a|
,由此能求出⊙C的方程.
解答: 解:設(shè)圓心C(a,b),
由已知得
(a-1)2+b2
=
(a-3)2+b2
(a-1)2+b2
=|a|
,
解得a=2,b=±
3
,半徑r=|a|=2,
∴⊙C的方程為(x-2)2+(y-
3
2=4或(x-2)2+(y+
3
2=4.
故答案為:(x-2)2+(y-
3
2=4或(x-2)2+(y+
3
2=4.
點(diǎn)評(píng):本題考查圓的方程的求法,是基礎(chǔ)題,解題時(shí)要注意圓的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圖l是某縣參加2011年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為A1、A2、…、Am(如A2表示身高(單位:cm)在[150,155)內(nèi)的學(xué)生人數(shù)),如圖2是統(tǒng)計(jì)圖l中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~190cm(含160cm,不含190cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)算法流程圖,則輸出的k值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,5,-1),
b
=(-2,3,5).
(1)若(k
a
+
b
)∥(
a
-3
b
),求實(shí)數(shù)k;
(2)若(k
a
+
b
)⊥(
a
-3
b
),求實(shí)數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在R上是增函數(shù)的冪函數(shù)為(  )
A、y=x
1
2
B、y=x2
C、y=x
1
3
D、y=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=2x-
3
x

(1)指出函數(shù)的定義域,證明f(x)為奇函數(shù);
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并用定義證明;
(3)試比較f(π)與f(log27)的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)的值域?yàn)閇1,2],則y=f(x+1)-2的值域?yàn)?div id="f8kxk83" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(2,m)與
b
=(m,8)的方向相反,則m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x+1),若f(α)=1,則α=
 

查看答案和解析>>

同步練習(xí)冊答案