設斜率為2的直線l過雙曲線的右焦 點,且與雙曲線的左、右兩支分別相交,則雙曲線離心率e的取值范圍是(   )

A.e> B.e> C.1<e< D.1<e<

A

解析試題分析:根據(jù)已知的題意,設斜率為2的直線l過雙曲線的右焦 點,且與雙曲線的左、右兩支分別相交,則說明其斜率應該是滿足小于漸近線的斜率,即可知,故選A.
考點:考查了雙曲線的性質。
點評:解決該試題的關鍵是理解直線的斜率與雙曲線的漸近線斜率之間的關系,從而滿足題意,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

已知P在拋物線上,那么點P到點Q(2,1)的距離與點P到拋物線焦點距離之和取得最小值時,點P的坐標為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過原點的直線與雙曲線有兩個交點,則直線的斜率的取值范圍為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

我們把離心率為黃金比的橢圓稱為“優(yōu)美橢圓”.設 為“優(yōu)美橢圓”,F(xiàn)、A分別是左焦點和右頂點,B是短軸的一個端點,則 (  )

A.60° B.75° C.90° D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過拋物線y2=2px(p>0)的焦點作傾斜角為30°的直線l與拋物線交于P,Q兩點,分別作PP¢、QQ¢垂直于拋物線的準線于P¢、Q¢,若|PQ|=2,則四邊形PP¢Q¢Q的面積為

A.1 B.2 C. D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知橢圓的一個焦點與拋物線的焦點重合,則該橢圓的離心率為(    )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

橢圓M="1" (a>b>0) 的左、右焦點分別為F1、F2,P為橢圓M上任一點,且 的最大值的取值范圍是,其中. 則橢圓M的離心率e的取值范圍是(   ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設雙曲線的虛軸長為2,焦距為,則雙曲線的漸近線方程為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

與橢圓共焦點且過點(5,-2)的雙曲線標準方程是

A. B. C. D. 

查看答案和解析>>

同步練習冊答案