設(shè)Rt△ABC的三邊長AB=5,BC=4,CA=3,則向量
BC
在向量
AB
上的投影等于
 
考點:平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:根據(jù)向量投影的定義,結(jié)合圖形,求出答案來.
解答: 解:如圖所示,
Rt△ABC中,cosB=
4
5
,
∴cos<
BC
,
AB
>=-
4
5

∴向量
BC
在向量
AB
上的投影是
|
BC
|cos<
BC
,
AB
>=4×(-
4
5
)=-
16
5

故答案為:-
16
5
點評:本題考查了平面向量的投影的定義與計算問題,解題時應(yīng)畫出圖形,結(jié)合圖形與投影的定義進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

攀枝花市歡樂陽光節(jié)是攀枝花市的一次向外界展示攀枝花的盛會,為了搞好接待工作,組委會在某大學(xué)招募了10名男志愿者和5名女志愿者(分成甲乙兩組),招募時志愿者的個人綜合素質(zhì)測評成績?nèi)鐖D所示.
(Ⅰ)問男志愿者和女志愿者的平均個人綜合素質(zhì)測評成績哪個更高?
(Ⅱ)現(xiàn)采用分層抽樣的方法從甲乙兩組中共抽取3名志愿者負(fù)責(zé)接
待外賓,要求3人中至少有一名志愿者個人綜合素質(zhì)測評為優(yōu)秀(成績
在80分以上為優(yōu)秀)的概率;
(Ⅲ)抽樣方法同(Ⅱ),記X表示抽取的3名志愿者的個人綜合素質(zhì)測評為優(yōu)秀的數(shù)目,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:f(x)=
x2+2,x∈[0,1)
2-x2,x∈[-1,0)
且f(x+2)=f(x),g(x)=
2x+5
x+2
,則方程f(x)=g(x)在區(qū)間[-5,1]上的所有實根之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x-
3
cos2x的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
(x>0),若將函數(shù)圖象繞原點逆時針旋轉(zhuǎn)α(α∈(0,π])角后得到的函數(shù)y=g(x)存在反函數(shù),則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(x1,x12),B(x2,x22)是函數(shù)y=x2圖象上的任意不同兩點,由圖象可知,線段AB總是位于A,B兩點之間函數(shù)圖象的上方,因此結(jié)論
x12+x22
2
>(
x1+x2
2
2成立,運(yùn)用類比推理的思想,若點A(x1,log2x1),B(x2,log2x2)是函數(shù)y=log2x圖象上的任意不同兩點,則類似的有結(jié)論
 
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
(1-i)3
1+i
=-2+bi,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“階梯函數(shù)”h(x)=
1,x>0
0,x≤0
,則不等式x+2>(2x-1)h(x)的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中:
①命題“若xy=1,則x,y互為倒數(shù)”的逆命題;
②命題“若兩個三角形面積相等,則它們?nèi)取钡姆衩};
③命題“若x+y≠3,則x≠1或y≠2”;
④命題“?x∈R,4x2-4x+1≤0”的否定.
其中真命題有
 
(填寫序號).

查看答案和解析>>

同步練習(xí)冊答案