如圖,直徑,直線相切于。垂直于垂直于垂直于連接證明:

(1)
(2)
見解析
(1)由直線CD與相切,得到
由AB是的直徑,
,
(2)
,同理可得

第一問由切線聯(lián)想到弦切角定理,進(jìn)而轉(zhuǎn)化到直角三角形中來解決角相等問題;第二問主要是在直角三角形中由,進(jìn)而想到利用三角形全等知識(shí)來解決。
【考點(diǎn)定位】本題考查平面幾何弦切角定理,全等三角形知識(shí)以及相似三角形知識(shí),在處理幾何量的關(guān)系時(shí)運(yùn)用等量代換。。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,、是圓上三點(diǎn),的角平分線,交圓,過作圓的切線交的 延長(zhǎng)線于.

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知AB∥CD∥EF,AF,BE相交于點(diǎn)O,若AO=OD=DF,BE=10 cm,則BO的長(zhǎng)為 (  ).
A.cmB.5 cm
C.cmD.3 cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,AB是⊙O的直徑,AC切⊙O于點(diǎn)A,AC=AB,CO交⊙O于點(diǎn)P,CO的延長(zhǎng)線交⊙O于點(diǎn)F,BP的延長(zhǎng)線交AC于點(diǎn)E.

(1) 求證:FA∥BE;
(2)求證:;           
(3)若⊙O的直徑AB=2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在中,直徑與弦垂直,垂足在半徑,,垂足為 ,若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖甲,四邊形是等腰梯形,.由4個(gè)這樣的等腰梯形可以拼出圖乙所示的平行四邊形,則四邊形度數(shù)為 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖AB為圓O直徑,P為圓O外一點(diǎn),過P點(diǎn)作PC⊥AB,
垂是為C,PC交圓O于D點(diǎn),PA交圓O于E點(diǎn),BE交PC于F點(diǎn)。

(I)求證:∠PFE=∠PAB;
(II)求證:CD2=CF·CP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB、CD是⊙O的兩條平行切線,B、D為切點(diǎn),AC為⊙O的切線,切點(diǎn)為E.過A作AF⊥CD,F(xiàn)為垂足.

(1)求證:四邊形ABDF是矩形;
(2)若AB=4,CD=9,求⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分10分)
如下圖,AB、CD是圓的兩條平行弦,BE//ACBECDE、交圓于F,過A點(diǎn)的切線交DC的延長(zhǎng)線于P,PC=ED=1,PA=2.

(I)求AC的長(zhǎng);
(II)求證:BEEF

查看答案和解析>>

同步練習(xí)冊(cè)答案