分析 由題意,l⊥OM,且圓心O到直線l的距離為$\frac{1}{2}×\frac{2}{3}×|\overrightarrow{OM}|$=$\frac{2}{3}$,由此求出a,b,即可得出結(jié)論.
解答 解:由題意,l⊥OM,且圓心O到直線l的距離為$\frac{1}{2}×\frac{2}{3}×|\overrightarrow{OM}|$=$\frac{2}{3}$,
∴$\left\{\begin{array}{l}{a=-\sqrt{3}}\\{\frac{\sqrt{{a}^{2}+1}}=\frac{2}{3}}\end{array}\right.$,
由于b>0,∴a=-$\sqrt{3}$,b=$\frac{4}{3}$,
∴$\sqrt{3}ab$=-4.
故答案為-4.
點(diǎn)評 本題考查圓的切線方程的求法,考查實(shí)數(shù)值的求法,是中檔題,解題時要認(rèn)真審題,注意圓的性質(zhì)、點(diǎn)到直線的距離公式的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -3 | C. | -4 | D. | -18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{7}$ | B. | $\frac{5}{8}$ | C. | $\frac{5}{9}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | 2$\sqrt{5}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | 2 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com