9.如圖所示的程序框圖,若輸入的a、k分別89、2,則輸出的數(shù)為( 。
A.1011001(2)B.1101001(2)C.1110010(2)D.1011010(2)

分析 模擬程序框圖的運行過程,得出該程序運行后輸出的是把輸入的a用二進制表示,寫出結(jié)果即可.

解答 解:模擬程序框圖的運行過程,如下;
輸入a=89,k=2,q=89÷2=44…1;
a=44,k=2,q=44÷2=22…0;
a=22,k=2,q=22÷2=11…0;
a=11,k=2,a=11÷2=5…1;
a=5,k=2,q=5÷2=2…1;
a=2,k=2,q=2÷2=1…0;
a=1,k=2,q=1÷20…1;
則輸出的數(shù)為1011001(2)
故選:A.

點評 本題考查了程序框圖的應用問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知數(shù)列{an}滿足${a_1}=3,{a_{n+1}}={a_n}+2(n∈{N^*})$,其前n項和為Sn,則$\frac{{4{S_n}+39}}{{4{a_n}}}$的最小值為( 。
A.$\frac{7}{2}$B.$\frac{99}{28}$C.$\frac{71}{20}$D.$\frac{51}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.若復數(shù)z=$\frac{2}{(1-i)^{2}}$+$\frac{3+i}{1-i}$的虛部為m,函數(shù)f(x)=x+$\frac{4}{x-1}$,x∈[2,3]的最小值為n.
(1)求m,n;
(2)求由曲線y=x,直線x=m,x=n以及x軸所圍成平面圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)f(x)=cos2x-cos(2x+$\frac{π}{3}$)的圖形向左平移φ(φ>0)個單位后關(guān)于y軸對稱,則φ的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=2,$\overrightarrow$=(cosα,sinα).
(Ⅰ)求$\overrightarrow{a}$•$\overrightarrow$;  
(Ⅱ)求|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設a,b,c為正數(shù),a+b+9c2=1,則$\sqrt{a}$+$\sqrt$+$\sqrt{3}$c的最大值為$\frac{\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.一臺機器使用的時間較長,但還可以使用,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少,隨機器的運轉(zhuǎn)的速度而變化,下表為抽樣試驗的結(jié)果:
 轉(zhuǎn)速x(轉(zhuǎn)/秒) 2 4 5 6 8
 每小時生產(chǎn)有缺點的零件數(shù)y(件) 30 40 60 50 70
(1)如果y對x有線性相關(guān)關(guān)系,求回歸直線方程;
(2)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺點的零件最多為89個,那么機器的運轉(zhuǎn)速度應控制在什么范圍內(nèi)?
附:最小二乘法估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$
參考數(shù)值:$\sum_{i}^{5}{x}_{i}{y}_{i}$=1380,$\sum_{i}^{5}{{x}_{i}}^{2}$=145.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.集合A={-1,0,1}的子集個數(shù)是( 。
A.5B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,矩形ABCD和直角三角形ABP有共同的邊AB,且PA=AD=3,DC=4,沿BD把平面DBP折起,使AC=$\sqrt{7}$.
(1)求證:PD⊥BC;
(2)求PC與平面PBD所成角的正弦值.

查看答案和解析>>

同步練習冊答案