4.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}y≥0\\ x-y+1≥0\\ x+y-3≤0\end{array}\right.$則$z=\frac{x}{2}+y$的最大值為$\frac{5}{2}$.

分析 先根據(jù)約束條件畫出可行域,再利用z的幾何意義求最值,只需求出直線過可行域內(nèi)的點A時,從而得到z的最大值.

解答 解:依題意,畫出可行域(如圖示),
則對于目標函數(shù)$z=\frac{x}{2}+y$,
當(dāng)直線經(jīng)過A(1,2)時,
z取到最大值,Zmax=$\frac{5}{2}$.
故答案為:$\frac{5}{2}$

點評 本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點、定出最優(yōu)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-2,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為2x+y-3=0,求a的值;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(3)若曲線y=f(x)都在直線(a+1)x+y-2(a-1)=0的上方,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題“若{an}是常數(shù)列,則{an}是等差數(shù)列”,在其逆命題、否命題和逆否命題中,假命題的個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C所對的邊分別為a,b,c,且cos2A+cos2B+2sinAsinB=2coc2C.
(Ⅰ)求角C的值;
(Ⅱ)若△ABC為銳角三角形,且$c=\sqrt{3}$,求a-b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=e-xB.y=ln(-x)C.y=x3D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,等腰梯形BCDP中,BC∥PD,BA⊥PD于點A,PD=3BC,且AB=BC=1.沿AB把△PAB折起到△P'AB的位置(如圖2),使∠P'AD=90°.

(Ⅰ)求證:CD⊥平面P'AC;
(Ⅱ)求三棱錐A-P'BC的體積;
(Ⅲ)線段P'A上是否存在點M,使得BM∥平面P'CD.若存在,指出點M的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,AD∥BC,∠BAD=90°,PA=PD,AB⊥PA,AD=2,AB=BC=1
(Ⅰ)求證:平面PAD⊥平面ABCD
(Ⅱ)若E為PD的中點,求證:CE∥平面PAB
(Ⅲ)若DC與平面PAB所成的角為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)不等式$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+y≤4\end{array}\right.$表示的平面區(qū)域為M,若直線y=kx-2上存在M內(nèi)的點,則實數(shù)k的取值范圍是[2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.計算:sin(-$\frac{16π}{3}$)=$\frac{\sqrt{3}}{2}$,cos(-$\frac{8π}{3}$)=$-\frac{1}{2}$,tan(-$\frac{17}{4}$π)=-1.

查看答案和解析>>

同步練習(xí)冊答案