【題目】設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性,并指出其單調(diào)區(qū)間;
(2)若對恒成立,求的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)對函數(shù)求導(dǎo),對a進行討論:當a>0和a≤0時,研究函數(shù)的單調(diào)性.(2)原不等式等價于在上恒成立,構(gòu)造函數(shù),由m(x)的單調(diào)性即即可得到a的范圍.
(1)由,得,.
①當時,,,在上單調(diào)遞減,
②當時,,
當時,;當時,.
故在上單調(diào)遞減,在上單調(diào)遞增,
故當時,在上單調(diào)遞減;
當時,在上單調(diào)遞減,在上單調(diào)遞增.
(2)原不等式等價于在上恒成立,
即在上恒成立,
令,
只需在上恒成立即可.
又因為,所以在處必大于等于0.
令,由,可得.
當時, .
因為,所以,又,故在時恒大于0,
所以當時,在上單調(diào)遞增,
所以,故也在上單調(diào)遞增,
所以,即在上恒大于0.
綜上,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,
.
(1)證明: ;
(2)若直線與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.在統(tǒng)計學(xué)中,獨立性檢驗是檢驗兩個分類變量是否有關(guān)系的一種統(tǒng)計方法
B.在殘差圖中,殘差分布的帶狀區(qū)域的寬度越狹窄,其模擬的效果越好
C.線性回歸方程對應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點中的一個點
D.在回歸分析中,相關(guān)指數(shù)越大,模擬的效果越好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機構(gòu)組織了一次檢測考試,并隨機抽取了部分高三理科學(xué)生數(shù)學(xué)成績繪制如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計該市此次檢測理科數(shù)學(xué)的平均成績;(精確到個位)
(2)研究發(fā)現(xiàn),本次檢測的理科數(shù)學(xué)成績近似服從正態(tài)分布(,約為),按以往的統(tǒng)計數(shù)據(jù),理科數(shù)學(xué)成績能達到自主招生分數(shù)要求的同學(xué)約占.
(。估計本次檢測成績達到自主招生分數(shù)要求的理科數(shù)學(xué)成績大約是多少分?(精確到個位)
(ⅱ)從該市高三理科學(xué)生中隨機抽取人,記理科數(shù)學(xué)成績能達到自主招生分數(shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說明:表示的概率.參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的函數(shù),其導(dǎo)函數(shù).
(1)如果函數(shù)在處有極值,求函數(shù)的表達式;
(2)當時,函數(shù)的圖象上任一點P處的切線斜率為k,若,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最大值為,周期為,將函數(shù)的圖象向左平移個單位長度得到的圖象,若是偶函數(shù),則的解析式為( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com