【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= ,AB=1,M是PB的中點.

(1)證明:面PAD⊥面PCD;
(2)求AC與PB所成的角;
(3)求面AMC與面BMC所成二面角的大小余弦值.

【答案】
(1)證明:∵PA⊥面ABCD,CD⊥AD,

∴由三垂線定理得:CD⊥PD.

因而,CD與面PAD內(nèi)兩條相交直線AD,PD都垂直,

∴CD⊥面PAD.

又CD面PCD,

∴面PAD⊥面PCD.


(2)解:過點B作BE∥CA,且BE=CA,

則∠PBE是AC與PB所成的角.

連接AE,可知AC=CB=BE=AE= ,又AB=2,

所以四邊形ACBE為正方形.由PA⊥面ABCD得∠PEB=90°

在Rt△PEB中BE=a2=3b2,PB= ,

∴cos∠PBE=

∴AC與PB所成的角為arccos


(3)解:作AN⊥CM,垂足為N,連接BN.

在Rt△PAB中,AM=MB,又AC=CB,

∴△AMC≌△BMC,

∴BN⊥CM,故∠ANB為所求二面角的平面角

∵CB⊥AC,由三垂線定理,得CB⊥PC,

在Rt△PCB中,CM=MB,所以CM=AM.

在等腰三角形AMC中,ANMC= ,

∴AN=

∴AB=2,

∴cos∠ANB= =﹣

故面AMC與面BMC所成二面角的大小余弦值為﹣


【解析】(1)證明面PAD⊥面PCD,只需證明面PCD內(nèi)的直線CD,垂直平面PAD內(nèi)的兩條相交直線AD、PD即可;(2)過點B作BE∥CA,且BE=CA,∠PBE是AC與PB所成的角,解直角三角形PEB求AC與PB所成的角;(3)作AN⊥CM,垂足為N,連接BN,說明∠ANB為所求二面角的平面角,在三角形AMC中,用余弦定理求面AMC與面BMC所成二面角的大。
【考點精析】關(guān)于本題考查的平面與平面垂直的判定和空間角的異面直線所成的角,需要了解一個平面過另一個平面的垂線,則這兩個平面垂直;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)設△AOB的外接圓圓心為E.
(1)若⊙E與直線CD相切,求實數(shù)a的值;
(2)設點P在圓E上,使△PCD的面積等于12的點P有且只有三個,試問這樣的⊙E是否存在,若存在,求出⊙E的標準方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為2的正方形, 底面, ,且

(Ⅰ)記線段的中點為,在平面內(nèi)過點作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

(Ⅱ)求直線與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知: 、 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標.
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0,0≤≤π)為偶函數(shù),其圖象上相鄰的兩個最高點之間的距離為2π. (Ⅰ)求f(x)的解析式;
(Ⅱ)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直線m被兩平行線l1:x+y=0與l2:x+y+ =0所截得的線段的長為2 ,則m的傾斜角可以是
①15° ②45° ③60° ④105°⑤120° ⑥165°
其中正確答案的序號是 . (寫出所有正確答案的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別是焦距為的橢圓的左、右頂點, 為橢圓上非頂點的點,直線的斜率分別為,且.

(1)求橢圓的方程;

(2)直線(與軸不重合)過點且與橢圓交于兩點,直線交于點,試求點的軌跡是否是垂直軸的直線,若是,則求出點的軌跡方程,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某金匠以黃金為原材料加工一種飾品,經(jīng)多年的數(shù)據(jù)統(tǒng)計得知,該金匠平均每加5 個飾品中有4個成品和1個廢品,每個成品可獲利3萬元,每個廢品損失1萬元,假設該金匠加工每件飾品互不影響,以頻率估計概率.

(1)若金金匠加工4個飾品,求其中廢品的數(shù)量不超過1的概率;

(2)若該金匠加工了 3個飾品,求他所獲利潤的數(shù)學期望.

(兩小問的計算結(jié)果都用分數(shù)表示)

查看答案和解析>>

同步練習冊答案