3.長方體ABCD-A1B1C1D1的底面是邊長為2的正方形,若在側(cè)棱AA1上至少存在一點E,使得∠C1EB=90°,則側(cè)棱AA1的長的最小值( 。
A.2B.4C.6D.8

分析 設(shè)側(cè)棱AA1的長為x,A1E=t,則AE=x-t,由已知得t2-xt+4=0,由此利用根的判別式能求出側(cè)棱AA1的長的最小值.

解答 解:設(shè)側(cè)棱AA1的長為x,A1E=t,則AE=x-t,
∵長方體ABCD-A1B1C1D1的底面是邊長為2的正方形,
∠C1EB=90°,
∴$C{E}^{2}+B{E}^{2}=B{{C}_{1}}^{2}$,
∴8+t2+4+(x-t)2=4+x2,
整理,得:t2-xt+4=0,
∵在側(cè)棱AA1上至少存在一點E,使得∠C1EB=90°,
∴△=(-x)2-16≥0,
解得x≥4.或x≤-4(舍).
∴側(cè)棱AA1的長的最小值為4.
故選:B.

點評 本題考查長方體的側(cè)棱長的最小值的求法,是中檔題,解題時要注意根的判別式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在二分法求方程f(x)=0在[0,4]上的近似解時,最多經(jīng)過12次計算精確度可以達(dá)到0.001.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓C:x2+y2+8x+12=0,若直線y=kx-2與圓C至少有一個公共點,則實數(shù)k的取值范圍為$[{-\frac{4}{3},0}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知某個幾何體的三視圖如圖,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是$\frac{8000}{3}$ cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)$z=\frac{3}{1+i}$,則|z-1|為( 。
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\vec n=(2,0,1)$為平面α的一個法向量,點A(-1,2,1)在α內(nèi),則P(1,2,-2)到平面α的距離為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\sqrt{5}$C.$2\sqrt{5}$D.$\frac{{\sqrt{5}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示的程序的輸出結(jié)果為S=1320,則判斷框中應(yīng)填(  )
A.i≥9B.i≤9C.i≤10D.i≥10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.己知x0=-$\frac{π}{6}$是函數(shù)f(x)=sin(2x+φ)的一個極小值點,則f(x)的一個單調(diào)遞減區(qū)間是( 。
A.($\frac{π}{3}$,$\frac{5π}{6}$)B.($\frac{π}{6}$,$\frac{2π}{3}$)C.($\frac{π}{2}$,π)D.($\frac{2π}{3}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)={2016^x}+{log_{2016}}(\sqrt{{x^2}+1}+x)-{2016^{-x}}$+2,則關(guān)于x的不等式f(3x+1)+f(x)>4的解集為( 。
A.(-$\frac{1}{2016}$,+∞)B.(-$\frac{1}{3}$,+∞)C.(-$\frac{1}{2}$,+∞)D.(-$\frac{1}{4}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案