已知直線l:2x-y+1=0,求:
(1)過(guò)點(diǎn)P(3,1)且與直線l垂直的直線方程;(寫成一般式)
(2)點(diǎn)P(3,1)關(guān)于直線l的對(duì)稱點(diǎn).
分析:(1)設(shè)過(guò)點(diǎn)P(3,1)且與直線l垂直的直線方程為x+2y+m=0,把點(diǎn)P代入解得m即可.
(2)點(diǎn)P(3,1)關(guān)于直線l的對(duì)稱點(diǎn)P′(s,t),則
s+3
2
-
1+t
2
+1=0
t-1
s-3
×2=-1
,解得即可.
解答:解:(1)設(shè)過(guò)點(diǎn)P(3,1)且與直線l垂直的直線方程為x+2y+m=0,
把點(diǎn)P代入可得3+2×1+m=0,解得m=-5.
∴過(guò)點(diǎn)P(3,1)且與直線l垂直的直線方程為:x+2y-5=0.
(2)點(diǎn)P(3,1)關(guān)于直線l的對(duì)稱點(diǎn)P′(s,t),
s+3
2
-
1+t
2
+1=0
t-1
s-3
×2=-1

解得
s=-
9
5
t=
17
5

P(-
9
5
,
17
5
)
點(diǎn)評(píng):本題考查了相互垂直的直線斜率之間的關(guān)系、軸對(duì)稱問(wèn)題、中檔坐標(biāo)公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)為F(0,-
2
),點(diǎn)M(1,
2
)在橢圓C上
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l:2x-y-2=0與橢圓C交于A,B兩點(diǎn),求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)為F(0,-
2
)
,點(diǎn)M(1,
2
)
在橢圓C上
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程
(Ⅱ)已知直線l:2x-y-2=0與橢圓C交于A,B兩點(diǎn),求△MAB的面積
(Ⅲ)設(shè)P為橢圓C上一點(diǎn),若∠PMF=90°,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•佛山二模)已知直線l:2x+y+2=0與橢圓C:x2+
y2
4
=1交于A,B兩點(diǎn),P為C上的點(diǎn),則使△PAB的面積S為
1
2
的點(diǎn)P的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:2x-y+1=0
①求過(guò)點(diǎn)P(3,1)且與l平行的直線方程;
②求過(guò)點(diǎn)P(3,1)且在兩坐標(biāo)軸上截距相等的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案