【題目】如圖,點在以為直徑的上運動,平面,且,點、分別是、的中點.

1)求證:平面平面;

2)若,求平面與平面所成銳二面角的余弦值.

【答案】1)證明見解析;(2

【解析】

1)證明平面可得,再結(jié)合即可得出平面,故而平面平面;

2)建立空間直角坐標系,求出兩半平面的法向量,計算法向量的夾角即可得出二面角的大。

1)證明:∵平面,平面,

,

是圓的直徑,∴,

平面,

平面

,

的中位線,∴

,

的中點,

,

平面,又平面,

∴平面平面

2)解:∵是圓的直徑,∴,

,不妨設,則,,

,和平面的垂線為坐標軸建立空間直角坐標系,如圖所示,

,,,

,,,

設平面的法向量為,則,即,

,

由(1)知平面,故為平面的一個法向量,

∴平面與平面所成銳二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,設,的兩個不同極值點,證明:;

2)設,的兩個不同零點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市勞動部門堅持就業(yè)優(yōu)先,釆取多項措施加快發(fā)展新興產(chǎn)業(yè),服務經(jīng)濟,帶來大量就業(yè)崗位,據(jù)政府工作報告顯示,截至2018年末,全市城鎮(zhèn)新增就業(yè)21.9萬人,創(chuàng)歷史新高.城鎮(zhèn)登記失業(yè)率為4.2%,比上年度下降0.73個百分點,處于近20年來的最低水平.

1)現(xiàn)從該城鎮(zhèn)適齡人群中抽取100人,得到如下列聯(lián)表:

失業(yè)

就業(yè)

合計

3

62

65

2

33

35

合計

5

95

100

根據(jù)聯(lián)表判斷是否有99%的把握認為失業(yè)與性別有關?

附:

0.050

0.010

0.001

3.841

6.635

10.828

2)調(diào)查顯示,新增就業(yè)人群中,新興業(yè)態(tài),民營經(jīng)濟,大型國企對就業(yè)支撐作用不斷增強,其崗位比例為253,現(xiàn)要抽取一個樣本容量為50的樣本,則這三種崗位應該各抽取多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標坐標系中,曲線的參數(shù)方程為為參數(shù)),曲線 .以為極點, 軸的非負半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系.

1)求曲線的極坐標方程;

2)射線)與曲線的異于極點的交點為,與曲線的交點為,求.

【答案】(1) 的極坐標方程為 的極坐標方程為;(2) .

【解析】試題分析:(1先根據(jù)三角函數(shù)平方關系消參數(shù)得曲線,再根據(jù)將曲線極坐標方程;2代人曲線的極坐標方程,再根據(jù).

試題解析:1)曲線的參數(shù)方程為參數(shù))

可化為普通方程,

,可得曲線的極坐標方程為,

曲線的極坐標方程為.

2)射線)與曲線的交點的極徑為

射線)與曲線的交點的極徑滿足,解得

所以.

型】解答
結(jié)束】
23

【題目】設函數(shù)

(1)設的解集為,求集合

(2)已知為(1)中集合中的最大整數(shù),且(其中,為正實數(shù)),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】畢達哥拉斯樹是由畢達哥拉斯根據(jù)“勾股定理”所畫出來的一個可以無限重復的圖形,也叫“勾股樹”,其是由一個等腰直角三角形分別以它的每一條邊向外作正方形而得到.圖1所示是第1代“勾股樹”,重復圖1的作法,得到第2代“勾股樹”(如圖2),如此繼續(xù).若“勾股樹”上共得到8191個正方形,設初始正方形的邊長為1,則最小正方形的邊長為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)上單調(diào),則的取值范圍是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設拋物線C1:的準線1x軸交于橢圓C2的右焦點F2,F1C2的左焦點.橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點QMC1上一動點,且在PQ之間移動.

1)當取最小值時,求C1C2的方程;

2)若PF1F2的邊長恰好是三個連續(xù)的自然數(shù),當MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在中國決勝全面建成小康社會的關鍵之年,如何更好地保障和改善民生,如何切實增強政策“獲得感”,成為2019年全國兩會的重要關切.某地區(qū)為改善民生調(diào)研了甲、乙、丙、丁、戊5個民生項目,得到如下信息:

①若該地區(qū)引進甲項目,就必須引進與之配套的乙項目;

②丁、戊兩個項目與民生密切相關,這兩個項目至少要引進一個;

③乙、丙兩個項目之間有沖突,兩個項目只能引進一個;

④丙、丁兩個項目關聯(lián)度較高,要么同時引進,要么都不引進;

⑤若引進項目戊,甲、丁兩個項目也必須引進.

則該地區(qū)應引進的項目為______

查看答案和解析>>

同步練習冊答案