【題目】已知三棱錐的展開圖如圖二,其中四邊形為邊長等于的正方形,均為正三角形,在三棱錐中:

1)證明:平面平面;

2)若的中點(diǎn),求二面角的余弦值.

【答案】(1)見解析(2)

【解析】

1)設(shè)的中點(diǎn)為,連接,由邊長關(guān)系得,從而可得平面,即可證明平面平面;

2)由(1)問可知平面,所以以,所在直線分別為軸,軸,軸建立如圖示空間直角坐標(biāo)系,利用向量法求出平面和平面的法向量,再利用二面角的公式即可得到二面角的余弦值。

1)設(shè)的中點(diǎn)為,連接,

由題意,得,

因?yàn)樵?/span>中,的中點(diǎn),所以,

因?yàn)樵?/span>中,,,

,所以

因?yàn)?/span>,平面,所以平面

平面,所以平面平面

2)由(1)問可知平面,所以,,,于是以,,所在直線分別為軸,軸,軸建立如圖示空間直角坐標(biāo)系,

,,,,

,,

設(shè)平面的法向量為,則

得:.令,得,,即

設(shè)平面的法向量為,由得:

,令,得,即

.由圖可知,二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求證:恒成立;

(2)若關(guān)于的方程至少有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它的外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若射線 與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】時值金秋十月,正是秋高氣爽,陽光明媚的美好時刻。復(fù)興中學(xué)一年一度的校運(yùn)會正在密鑼緊鼓地籌備中,同學(xué)們也在熱切地期盼著,都想為校運(yùn)會出一份力。小智同學(xué)則通過對學(xué)校有關(guān)部門的走訪,隨機(jī)地統(tǒng)計(jì)了過去許多年中的五個年份的校運(yùn)會“參與”人數(shù)及相關(guān)數(shù)據(jù),并進(jìn)行分析,希望能為運(yùn)動會組織者科學(xué)地安排提供參考。

附:①過去許多年來學(xué)校的學(xué)生數(shù)基本上穩(wěn)定在3500人左右;②“參與”人數(shù)是指運(yùn)動員和志愿者,其余同學(xué)均為“啦啦隊(duì)員”,不計(jì)入其中;③用數(shù)字1、2、3、45表示小智同學(xué)統(tǒng)計(jì)的五個年份的年份數(shù),今年的年份數(shù)是6;

統(tǒng)計(jì)表(一)

年份數(shù)x

1

2

3

4

5

“參與”人數(shù)(y千人)

1.9

2.3

2.0

2.5

2.8

統(tǒng)計(jì)表(二)

高一(3)(4)班參加羽毛球比賽的情況:

男生

女生

小計(jì)

參加(人數(shù))

26

b

50

不參加(人數(shù))

c

20

小計(jì)

44

100

1)請你與小智同學(xué)一起根據(jù)統(tǒng)計(jì)表(一)所給的數(shù)據(jù),求出“參與”人數(shù)y關(guān)于年份數(shù)x的線性回歸方程,并預(yù)估今年的校運(yùn)會的“參與”人數(shù);

2)學(xué)校命名“參與”人數(shù)占總?cè)藬?shù)的百分之八十及以上的年份為“體育活躍年”.如果該校每屆校運(yùn)會的“參與”人數(shù)是互不影響的,且假定小智同學(xué)對今年校運(yùn)會的“參與”人數(shù)的預(yù)估是正確的,并以這6個年份中的“體育活躍年”所占的比例作為任意一年是“體育活躍年”的概率,F(xiàn)從過去許多年中隨機(jī)抽取9年來研究,記這9年中“體活躍年”的個數(shù)為隨機(jī)變量,試求隨機(jī)變量的分布列、期望和方差;

3)根據(jù)統(tǒng)計(jì)表(二),請問:你能否有超過60%的把握認(rèn)為“羽毛球運(yùn)動”與“性別”有關(guān)?

參考公式和數(shù)據(jù)一:,,

參考公式二:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在直角梯形中,,,,過,垂足為,現(xiàn)將沿折疊,使得.取的中點(diǎn),連接,,,如圖乙.

(1)求證:平面

(2)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線,(為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的后得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。

1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;

2)設(shè)直線l與曲線交于不同的兩點(diǎn)A,B,點(diǎn)M為拋物線的焦點(diǎn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費(fèi)者帶來放心的蔬菜,某農(nóng)村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬元)滿足.設(shè)甲大棚的投入為(單位:萬元),每年兩個大棚的總收益為(單位:萬元)

1)求的值;

2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓是橢圓與軸的兩個交點(diǎn),為橢圓C的上頂點(diǎn),設(shè)直線的斜率為,直線的斜率為,

(1)求橢圓的離心率;

(2)設(shè)直線與軸交于點(diǎn),交橢圓于兩點(diǎn),且滿足,當(dāng)的面積最大時,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案