(2012•海淀區(qū)一模)已知函數(shù)f(x)=
1,x∈Q
0,x∈CRQ
,則f(f(x))=
1
1

下面三個命題中,所有真命題的序號是
①②③
①②③

①函數(shù)f(x)是偶函數(shù);
②任取一個不為零的有理數(shù)T,f(x+T)=f(x)對x∈R恒成立;
③存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
分析:根據(jù)函數(shù)的對應(yīng)法則,可得不管x是有理數(shù)還是無理數(shù),均有f(f(x))=1.根據(jù)函數(shù)奇偶性的定義,可得f(x)是偶函數(shù),①正確;根據(jù)函數(shù)的表達式,結(jié)合有理數(shù)和無理數(shù)的性質(zhì),得②正確;取x1=-
3
3
,x2=0,x3=
3
3
,可得A(
3
3
,0)、B(0,1)、C(-
3
3
,0)三點恰好構(gòu)成等邊三角形,得③正確.
解答:解:∵當(dāng)x為有理數(shù)時,f(x)=1;當(dāng)x為無理數(shù)時,f(x)=0
∴當(dāng)x為有理數(shù)時,ff((x))=f(1)=1;當(dāng)x為無理數(shù)時,ff((x))=f(0)=1
即不管x是有理數(shù)還是無理數(shù),均有f(f(x))=1
接下來判斷三個命題的真假
對于①,因為有理數(shù)的相反數(shù)還是有理數(shù),無理數(shù)的相反數(shù)還是無理數(shù),
所以對任意x∈R,都有f(-x)=-f(x),故①正確;
對于②,若x是有理數(shù),則x+T也是有理數(shù); 若x是無理數(shù),則x+T也是無理數(shù)
∴根據(jù)函數(shù)的表達式,任取一個不為零的有理數(shù)T,f(x+T)=f(x)對x∈R恒成立,故②正確;
對于③,取x1=-
3
3
,x2=0,x3=
3
3
,可得f(x1)=0,f(x2)=1,f(x3)=0
∴A(
3
3
,0),B(0,1),C(-
3
3
,0),恰好△ABC為等邊三角形,故③正確.
故答案為:1     ①②③
點評:本題給出特殊函數(shù)表達式,求函數(shù)的值并討論它的奇偶性,著重考查了有理數(shù)、無理數(shù)的性質(zhì)和函數(shù)的奇偶性等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)一模)執(zhí)行如圖所示的程序框圖,輸出的k值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)一模)從甲、乙等5個人中選出3人排成一列,則甲不在排頭的排法種數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)一模)某學(xué)校隨機抽取部分新生調(diào)查其上學(xué)所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)所需時間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(Ⅰ)求直方圖中x的值;
(Ⅱ)如果上學(xué)所需時間不少于1小時的學(xué)生可申請在學(xué)校住宿,請估計學(xué)校600名新生中有多少名學(xué)生可以申請住宿;
(Ⅲ)從學(xué)校的新生中任選4名學(xué)生,這4名學(xué)生中上學(xué)所需時間少于20分鐘的人數(shù)記為X,求X的分布列和數(shù)學(xué)期望.(以直方圖中新生上學(xué)所需時間少于20分鐘的頻率作為每名學(xué)生上學(xué)所需時間少于20分鐘的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)一模)過雙曲線
x2
9
-
y2
16
=1
的右焦點,且平行于經(jīng)過一、三象限的漸近線的直線方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)一模)復(fù)數(shù)
a+2i1-i
在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,那么實數(shù)a=
2
2

查看答案和解析>>

同步練習(xí)冊答案