i是虛數(shù)單位,則(
1+i
1-i
4等于( 。
A、-1B、1C、-iD、i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:分子分同乘以1+i先化簡(jiǎn)
1+i
1-i
,在計(jì)算乘方即可.
解答: 解:化簡(jiǎn)可得
1+i
1-i
=
(1+i)2
(1-i)(1+i)

=
1+2i+i2
1-i2
=
2i
2
=i,
∴(
1+i
1-i
4=i4=1
故選:B
點(diǎn)評(píng):本題考查復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(x1,y1),B(x2,y2)(x1>x2)是函數(shù)f(x)=x3-|x|圖象上的兩個(gè)不同點(diǎn),且在A,B兩點(diǎn)處的切線互相平行,則
x2
x1
的取值范圍為( 。
A、[-1,0)
B、[-
3
2
,
3
2
]
C、(-1,0)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A是△ABC的內(nèi)角,當(dāng)cosA=
7
25
,則cos
A
2
=( 。
A、±
3
5
B、
3
5
C、±
4
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,前n項(xiàng)Sn=
1
2
n2+
a3
2
n,則a3的值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
都是非零向量,若
a
b
方向上的投影為3,
b
a
方向上的投影為4,則
a
的模與
b
的模之比值為( 。
A、
3
4
B、
4
3
C、
3
7
D、
4
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)變量x的分布列P(x=k)=
P
k(k+1)
(k=1,2,3,4),其中P為常數(shù),則P(
1
2
<x<
5
2
)=( 。
A、
2
3
B、
3
4
C、
4
5
D、
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有5個(gè)球,3個(gè)白球,2個(gè)黑球,現(xiàn)每次取一個(gè),無(wú)放回地抽取兩次,第二次抽到白球的概率為(  )
A、
3
5
B、
3
4
C、
1
2
D、
3
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈(0,e]時(shí),f(x)=ax+lnx(其中e是自然界對(duì)數(shù)的底,a∈R).
(1)設(shè)g(x)=
ln|x|
|x|
,x∈[-e,0),求證:當(dāng)a=-1時(shí),f(x)>g(x)+
1
2
;
(2)是否存在實(shí)數(shù)a,使得當(dāng)x∈[-e,0)時(shí),f(x)的最小值是3?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a2=1,前n項(xiàng)和為Sn,且Sn=
n(an-a1)
2

(1)求a1;
(2)證明數(shù)列{an}為等差數(shù)列,并寫出其通項(xiàng)公式;
(3)設(shè)lgbn=
an+1
3n
,試問是否存在正整數(shù)p,q(其中1<p<q),使b1,bp,bq成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案