20.共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照 分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

分析 (1)頻率和為1列出方程求得x的值;
(2)計算滿意度評分值在內(nèi)的人數(shù),寫出X的值可能取值,
計算對應(yīng)的概率值,寫出分布列,計算數(shù)學(xué)期望值.

解答 解析:(1)由(0.005+0.021+0.035+0.030+x)×10=1,
解得x=0.009;
(2)滿意度評分值在內(nèi)有100×0.009×10=9人,
其中男生6人,女生3人;
則X的值可以為0,1,2,3;
計算$P({X=0})=\frac{C_6^4C_3^0}{C_9^4}=\frac{15}{126}$,
$P({X=1})=\frac{C_6^3C_3^1}{C_9^4}=\frac{60}{126}$,
$P({X=2})=\frac{C_6^2C_3^2}{C_9^4}=\frac{45}{126}$,
$P({X=3})=\frac{C_6^1C_3^3}{C_9^4}=\frac{6}{126}$;
則X分布列如下:

X0123
P$\frac{15}{126}$$\frac{60}{126}$$\frac{45}{126}$$\frac{6}{126}$
所以X的期望為$E(X)=0×\frac{15}{126}+1×\frac{60}{126}+2×\frac{45}{126}+3×\frac{6}{126}=\frac{168}{126}=\frac{4}{3}$.

點評 本題考查了頻率分布直方圖與離散型隨機(jī)變量的分布列與數(shù)學(xué)期望的計算問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,在△AOB中,∠AOB=$\frac{3π}{4}$,OA=6,M為邊AB上一點,M到邊OA,OB的距離分別為2,2$\sqrt{2}$,則AB的長為6$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,已知sin(A+B)=2sinAcosB,那么△ABC一定是( 。
A.等腰直角三角形B.直角三角形C.等腰三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{2x(x<0)}\end{array}\right.$若f(a)=10,那么a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=ex+2x-a,a∈R,若曲線y=sinx上存在點(x0,y0),使得f(f(y0))=y0,則實數(shù)a的取值范圍是[-1+e-1,1+e].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓${C_1}:{x^2}+{y^2}+4x+3y+2=0$與圓${C_2}:{x^2}+{y^2}+2x+3y+1=0$,則圓C1與圓C2的位置關(guān)系為(  )
A.外切B.相離C.相交D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,$C=\frac{π}{3}$.
(1)若△ABC的面積等于$\sqrt{3}$,求a,b;
(2)若sinC+sin(B-A)=2sin2A,證明:△ABC是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}的通項公式an=-5n+2,則其前n項和Sn=-$\frac{5{n}^{2}+n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}的首項為a1=1,且an+1=$\frac{1}{2}{a_n}+\frac{1}{2}$,則此數(shù)列第4項是( 。
A.1B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{5}{8}$

查看答案和解析>>

同步練習(xí)冊答案