1.己知函數(shù)f(x)=ex-ex,g(x)=2ax+a,其中e為自然對數(shù)的底數(shù),a∈R.
(1)求證:f(x)≥0;
(2)若存在x0∈R,使f(x0)=g(x0),求a的取值范圍;
(3)若對任意的x∈(-∞,-1),f(x)≥g(x)恒成立,求a的最小值.

分析 (1)判斷f(x)的單調(diào)性,利用單調(diào)性求出f(x)的最小值,即可得出結(jié)論;
(2)令f(x)=g(x),分離參數(shù)得a=$\frac{{e}^{x}-ex}{2x+1}$,求出右側(cè)函數(shù)的值域即為a的范圍;
(3)令f(x)≥g(x),分離參數(shù)得a≥$\frac{{e}^{x}-ex}{2x+1}$,則右側(cè)函數(shù)在(-∞,-1)上的最大值為a的最小值.

解答 解:(1)f′(x)=ex-e,
∴當(dāng)x>1時,f′(x)>0,當(dāng)x<1時,f′(x)<0,
∴f(x)在(-∞,1)上是減函數(shù),在(1,+∞)上是增函數(shù),
∴fmin(x)=f(1)=0,
∴f(x)≥0.
(2)令f(x)=g(x)得a=$\frac{{e}^{x}-ex}{2x+1}$,
設(shè)h(x)=$\frac{{e}^{x}-ex}{2x+1}$,則h′(x)=$\frac{{e}^{x}(2x-1)}{{(2x+1)}^{2}}$,
∴當(dāng)x>$\frac{1}{2}$時,h′(x)>0,當(dāng)x<$\frac{1}{2}$時,h′(x)<0,
∴h(x)在(-∞,$\frac{1}{2}$)上是減函數(shù),在($\frac{1}{2}$,+∞)上是增函數(shù),
∵x→-${\frac{1}{2}}^{-}$時,h(x)→-∞,x→-∞時,h(x)→-$\frac{e}{2}$,h(1)=0,
x→-${\frac{1}{2}}^{+}$時,h(x)=+∞,x→+∞時,h(x)=+∞.
∵存在x0∈R,使f(x0)=g(x0),∴a=$\frac{{e}^{x}-ex}{2x+1}$,
有解.
∴a≥0或a<-$\frac{e}{2}$
(3)∵當(dāng)x∈(-∞,-1)時,f(x)≥g(x)恒成立,即ex-ex≥a(2x+1)在(-∞,-1)上恒成立,
∴a≥a=$\frac{{e}^{x}-ex}{2x+1}$在(-∞,-1)上恒成立.
由(2)可知h(x)=$\frac{{e}^{x}-ex}{2x+1}$在(-∞,-1)上是減函數(shù),
且x→-∞時,h(x)=-$\frac{e}{2}$,
∴a≥-$\frac{e}{2}$
即a的最小值為-$\frac{e}{2}$.

點(diǎn)評 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,函數(shù)最值得計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把十進(jìn)制數(shù)89化成五進(jìn)制數(shù)的末位數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l:$\left\{\begin{array}{l}{x=1+t}\\{y=-\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))
(1)寫出直線l和曲線C的普通方程;
(2)求直線l被曲線C截得的線段中點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若過點(diǎn)(0,2)的直線與拋物線y2=8x有且只有一個公共點(diǎn),則這樣的直線有( 。
A.一條B.兩條C.三條D.四條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=mxlnx-x,m∈[0,+∞),x∈(1,+∞)
(Ⅰ)若關(guān)于x的不等式f(x)>-1恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)x1>x2>1時,比較x${\;}_{1}^{{x}_{2}-1}$,x${\;}_{2}^{{x}_{1}-1}$的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{4}$x3-$\frac{3}{4}$x-$\frac{7}{2}$.x∈[0,2].
(I)求f(x)的單調(diào)區(qū)間與最值;
(II)設(shè)a>0,函數(shù)g(x)=x3-3a2x-2a,x∈[0,1],若對任意的x1∈[0,2]總存在x0∈[0,1]使得g(x0)=f(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知α∈(π,$\frac{3π}{2}$),tanα=2,則cosα=( 。
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$-\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過橢圓$\frac{x^2}{4}+\frac{y^2}{3}$=1的右焦點(diǎn)F作兩條互相垂直的弦AB,CD,若弦AB,CD的中點(diǎn)分別為M,N,則直線MN恒過定點(diǎn)$({\frac{4}{7},\;0})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)定義在(0,+∞)上的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞)都有f[f(x)-log2x]=3.若方程f(x)+f′(x)=a有兩個不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.(2+$\frac{1}{ln2}$,+∞)C.(3-$\frac{1}{2ln2}$,+∞)D.(3,+∞)

查看答案和解析>>

同步練習(xí)冊答案