【題目】如圖,已知為等邊三角形,為等腰直角三角形,.平面平面ABD,點(diǎn)E與點(diǎn)D在平面ABC的同側(cè),且,.點(diǎn)F為AD中點(diǎn),連接EF.
(1)求證:平面ABC;
(2)求證:平面平面ABD.
【答案】(1)見(jiàn)詳解;(2)見(jiàn)詳解
【解析】
(1)取的中點(diǎn),連接,可證出,由線面平行的判定定理即可證出;
(2)首先證出平面ABD,再由(1)可證得平面ABD,根據(jù)面面垂直的判定定理即可證出.
(1)
取的中點(diǎn),連接,
點(diǎn)F為AD中點(diǎn),且
,,且,
四邊形為平行四邊形,,
又因?yàn)?/span>平面ABC,平面ABC,
所以平面ABC.
(2)由(1)點(diǎn)為的中點(diǎn),且為等邊三角形,
所以,
又因?yàn)?/span>.平面平面ABD,
所以平面ABC,所以,
又,所以平面ABD,
又,所以平面ABD,
平面AED,
平面平面ABD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某產(chǎn)品的銷售額與廣告費(fèi)用之間的關(guān)系如下表:
(單位:萬(wàn)元) | 0 | 1 | 2 | 3 | 4 |
(單位:萬(wàn)元) | 10 | 15 | 30 | 35 |
若根據(jù)表中的數(shù)據(jù)用最小二乘法求得對(duì)的回歸直線方程為,則下列說(shuō)法中錯(cuò)誤的是( )
A.產(chǎn)品的銷售額與廣告費(fèi)用成正相關(guān)
B.該回歸直線過(guò)點(diǎn)
C.當(dāng)廣告費(fèi)用為10萬(wàn)元時(shí),銷售額一定為74萬(wàn)元
D.的值是20
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列的前n項(xiàng)和為,對(duì)于任意正整數(shù)m、n及正常數(shù)q,當(dāng)時(shí),恒成立,若存在常數(shù),使得為等差數(shù)列,則常數(shù)c的值為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市《城市總體規(guī)劃(年)》提出到年實(shí)現(xiàn)“分鐘社區(qū)生活圈”全覆蓋的目標(biāo),從教育與文化、醫(yī)療與養(yǎng)老、交通與購(gòu)物、休閑與健身個(gè)方面構(gòu)建“分鐘社區(qū)生活圈”指標(biāo)體系,并依據(jù)“分鐘社區(qū)生活圈”指數(shù)高低將小區(qū)劃分為:優(yōu)質(zhì)小區(qū)(指數(shù)為)、良好小區(qū)(指數(shù)為)、中等小區(qū)(指數(shù)為)以及待改進(jìn)小區(qū)(指數(shù)為)個(gè)等級(jí).下面是三個(gè)小區(qū)個(gè)方面指標(biāo)的調(diào)查數(shù)據(jù):
注:每個(gè)小區(qū)“分鐘社區(qū)生活圈”指數(shù),其中、、、為該小區(qū)四個(gè)方面的權(quán)重,、、、為該小區(qū)四個(gè)方面的指標(biāo)值(小區(qū)每一個(gè)方面的指標(biāo)值為之間的一個(gè)數(shù)值).
現(xiàn)有個(gè)小區(qū)的“分鐘社區(qū)生活圈”指數(shù)數(shù)據(jù),整理得到如下頻數(shù)分布表:
分組 | |||||
頻數(shù) |
(Ⅰ)分別判斷、、三個(gè)小區(qū)是否是優(yōu)質(zhì)小區(qū),并說(shuō)明理由;
(Ⅱ)對(duì)這個(gè)小區(qū)按照優(yōu)質(zhì)小區(qū)、良好小區(qū)、中等小區(qū)和待改進(jìn)小區(qū)進(jìn)行分層抽樣,抽取個(gè)小區(qū)進(jìn)行調(diào)查,若在抽取的個(gè)小區(qū)中再隨機(jī)地選取個(gè)小區(qū)做深入調(diào)查,記這個(gè)小區(qū)中為優(yōu)質(zhì)小區(qū)的個(gè)數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2019年女排世界杯中,中國(guó)女子排球隊(duì)以11連勝的優(yōu)異戰(zhàn)績(jī)成功奪冠,為祖國(guó)母親七十華誕獻(xiàn)上了一份厚禮.排球比賽采用5局3勝制,前4局比賽采用25分制,每個(gè)隊(duì)只有贏得至少25分,并同時(shí)超過(guò)對(duì)方2分時(shí),才勝1局;在決勝局(第五局)采用15分制,每個(gè)隊(duì)只有贏得至少15分,并領(lǐng)先對(duì)方2分為勝.在每局比賽中,發(fā)球方贏得此球后可得1分,并獲得下一球的發(fā)球權(quán),否則交換發(fā)球權(quán),并且對(duì)方得1分.現(xiàn)有甲乙兩隊(duì)進(jìn)行排球比賽:
(1)若前三局比賽中甲已經(jīng)贏兩局,乙贏一局.接下來(lái)兩隊(duì)贏得每局比賽的概率均為,求甲隊(duì)最后贏得整場(chǎng)比賽的概率;
(2)若前四局比賽中甲、乙兩隊(duì)已經(jīng)各贏兩局比賽.在決勝局(第五局)中,兩隊(duì)當(dāng)前的得分為甲、乙各14分,且甲已獲得下一發(fā)球權(quán).若甲發(fā)球時(shí)甲贏1分的概率為,乙發(fā)球時(shí)甲贏1分的概率為,得分者獲得下一個(gè)球的發(fā)球權(quán).設(shè)兩隊(duì)打了個(gè)球后甲贏得整場(chǎng)比賽,求x的取值及相應(yīng)的概率p(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題P:函數(shù)且|f(a)|<2,命題Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=,
(1)分別求命題P、Q為真命題時(shí)的實(shí)數(shù)a的取值范圍;
(2)當(dāng)實(shí)數(shù)a取何范圍時(shí),命題P、Q中有且僅有一個(gè)為真命題;
(3)設(shè)P、Q皆為真時(shí)a的取值范圍為集合S,,若RTS,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
已知曲線C:(t為參數(shù)), C:(為參數(shù))。
(1)化C,C的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)若C上的點(diǎn)P對(duì)應(yīng)的參數(shù)為,Q為C上的動(dòng)點(diǎn),求中點(diǎn)到直線
(t為參數(shù))距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)工業(yè)經(jīng)濟(jì)發(fā)展迅速,工業(yè)增加值連年攀升,某研究機(jī)構(gòu)統(tǒng)計(jì)了近十年(從2008年到2017年)的工業(yè)增加值(萬(wàn)億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業(yè)增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據(jù)表格數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根據(jù)散點(diǎn)圖和表中數(shù)據(jù),此研究機(jī)構(gòu)對(duì)工業(yè)增加值(萬(wàn)億元)與年份序號(hào)的回歸方程類型進(jìn)行了擬合實(shí)驗(yàn),研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請(qǐng)計(jì)算其擬合指數(shù),并用數(shù)據(jù)說(shuō)明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).
(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計(jì)值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);
(3)預(yù)測(cè)到哪一年的工業(yè)增加值能突破30萬(wàn)億元大關(guān).
附:樣本 的相關(guān)系數(shù),
,,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com