中,,斜邊上的高為h1,則;類比此性質(zhì),如圖,在四面體中,若,兩兩垂直,底面上的高為,則得到的正確結(jié)論為_________________________.

試題分析:連接且延長交于點(diǎn),連,由已知,在直角三角形中,,即,容易知道⊥平面,所以,在直角三角形中,,所以
,故.
(也可以由等體積法得到)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個(gè)數(shù)且兩端的數(shù)均為(n≥2),每個(gè)數(shù)是它下一行左右相鄰兩數(shù)的和,如=+,=+,=+,則第10行第4個(gè)數(shù)(從左往右數(shù))為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

根據(jù)下面一組等式:
S1=1;
S2=2+3=5;
S3=4+5+6=15;
S4=7+8+9+10=34;
S5=11+12+13+14+15=65;
S6=16+17+18+19+20+21=111;
S7=22+23+24+25+26+27+28=175;
……
可得S1+S3+S5+…+S2n-1=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

所有真約數(shù)(除本身之外的正約數(shù))的和等于它本身的正整數(shù)叫做完全數(shù).
如:;
;

已經(jīng)證明:若是質(zhì)數(shù),則是完全數(shù),.請寫出一個(gè)四位完全數(shù)       ;又,所以的所有正約數(shù)之和可表示為;
,所以的所有正約數(shù)之和可表示為
按此規(guī)律,的所有正約數(shù)之和可表示為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

“公差為的等差數(shù)列的前項(xiàng)和為,則數(shù)列是公差為的等差數(shù)列”.類比上述性質(zhì)有:“公比為的正項(xiàng)等比數(shù)列的前項(xiàng)積為,則數(shù)列____________”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

把正奇數(shù)數(shù)列按第一個(gè)括號(hào)一個(gè)數(shù),第二個(gè)括號(hào)兩個(gè)數(shù),第三個(gè)括號(hào)三個(gè)數(shù),第四個(gè)括號(hào)一個(gè)數(shù),第五個(gè)括號(hào)兩個(gè)數(shù),第六個(gè)括號(hào)三個(gè)數(shù), .依次劃分為,,,,, .則第個(gè)括號(hào)內(nèi)各數(shù)之和為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將正偶數(shù)按下表排列則2012所在的位置是
 
第1列
第2列
第3列
第4列
第5列
第一行
 
2
4
6
8
第二行
16
14
12
10
 
第三行
 
18
20
22
24
第四行
32
30
28
26
 
……
 
……
 
……
 
A.第252行第3列        
B.第252行第4列
C.第251行第3列        
D.第251行第4列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列{an}…,依它的10項(xiàng)的規(guī)律,則a99+a100的值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,計(jì)算,推測當(dāng)時(shí),有_____________.

查看答案和解析>>

同步練習(xí)冊答案