分析 由函數(shù)奇偶性的性質(zhì)結(jié)合已知求得f(x)>0的解集;利用函數(shù)的奇偶性將不等式進(jìn)行化簡(jiǎn),然后利用函數(shù)的單調(diào)性確定不等式的解集.
解答 解:由奇函數(shù)f(x)在(0,+∞)內(nèi)是減函數(shù),
可得f(x)在(-∞,0)內(nèi)也為減函數(shù),又f(3)=0,∴f(-3)=0,
則f(x)>0的解集為(-∞,-3)∪(0,3);
不等式x•f(x)<0等價(jià)為$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$.
∵函數(shù)y=f(x)為奇函數(shù),且在(0,+∞)上是減函數(shù),又f(3)=0,
∴解得x>3或x<-3,
即不等式的解集為(-∞,-3)∪(3,+∞).
故答案為:(-∞,-3)∪(0,3);(-∞,-3)∪(3,+∞).
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的應(yīng)用,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 16 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B⊆A | B. | A⊆∁RB | C. | A⊆B | D. | A∩B=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com