【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(2,0),點(diǎn)B在單位圓上,∠AOB=θ(0<θ<π).
(1)若點(diǎn)B(﹣ , ),求tan( ﹣θ)的值;
(2)若 , = ,求cos( +θ)的值.

【答案】
(1)解:若 ,如圖:

則: ;

;

7;


(2)解: ;

;

= ;

又θ∈(0,π);

=

=


【解析】(1)B點(diǎn)坐標(biāo)為 時(shí),可畫出圖形,從而可得出sinθ,cosθ的值,進(jìn)而得出tanθ的值,這樣根據(jù)兩角差的正切公式便可求出 的值;(2)根據(jù)條件可得到 ,從而可表示出 的坐標(biāo),進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算便可由 得出cosθ的值,進(jìn)而求出sinθ的值,從而便可求出 的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:關(guān)于x的方程x2ax20無(wú)實(shí)根,命題q:函數(shù)f(x)logax(0,+)上單調(diào)遞增,若pq為假命題,pq真命題,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖的程序框圖,如果輸入的a=﹣1,則輸出的S=( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1:y2=2xC2:y=x2在第一象限內(nèi)的交點(diǎn)為P.

(1)求過(guò)點(diǎn)P且與曲線C2相切的直線方程;

(2)求兩條曲線所圍圖形(如圖所示的陰影部分)的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y= (a>0,a≠1)的定義域和值域都是[0,1],則loga +loga =(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊扇形鐵皮OAB,∠AOB=60°,OA=72cm,要剪下來(lái)一個(gè)扇環(huán)形ABCD,作圓臺(tái)容器的側(cè)面,并且在余下的扇形OCD內(nèi)能剪下一塊與其相切的圓形使它恰好作圓臺(tái)容器的下底面(大底面).試求:

(1)AD應(yīng)取多長(zhǎng)?

(2)容器的容積為多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn)A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過(guò)點(diǎn)B(-2,0)的動(dòng)直線l與圓A相交于M,N兩點(diǎn).

(1)求圓A的方程;

(2)當(dāng)|MN|=2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將函數(shù)y=2sin(3x+φ)的圖象向右平移 個(gè)單位后得到的圖象關(guān)于點(diǎn)( ,0)對(duì)稱,則|φ|的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:實(shí)數(shù)滿足,:實(shí)數(shù)滿足

(1)若為真命題,求實(shí)數(shù)的取值范圍.

(2)若的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案