8.若曲線y=1+logax(a>0且a≠1)在點(1,1)處的切線經(jīng)過坐標原點,則a=e.

分析 求出函數(shù)的導數(shù),求得切線的斜率,由兩直線垂直的條件,可得a的方程,即可求得a,

解答 解:∵y=1+logax,
∴y′=$\frac{1}{xlna}$,
∴y′|x=1=$\frac{1}{lna}$,
∵曲線y=1+logax(a>0且a≠1)在點(1,1)處的切線方程為y-1=$\frac{1}{lna}$(x-1),
∵曲線y=1+logax(a>0且a≠1)在點(1,1)處的切線經(jīng)過坐標原點,
∴0-1=$\frac{1}{lna}$(0-1),∴a=e
故答案為e.

點評 本題考查利用導數(shù)研究曲線上某點處的切線方程的應用,解題時要認真審題,仔細解答.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,已知BC是⊙O的直徑,A是⊙O上一點,過點A作⊙O的切線交BC的延長線于點P,∠APB的平分線分別交AB,AC于點E,D.
(Ⅰ)證明:AE=AD;
(Ⅱ)若AC=CP,求$\frac{PC}{PA}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知A(2,0),M是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(其中a>1)的右焦點,P是橢圓C上的動點.
(Ⅰ)若M與A重合,求橢圓C的離心率;
(Ⅱ)若a=3,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設命題p:-1<log${\;}_{\frac{1}{2}}$x<0,q:2x>1,則p是q成立的是( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.以圍墻為一邊,用籬笆圍成長方形的場地(如圖),已知籬笆長為定值12.
(1)寫出場地面積y與邊長x的函數(shù);
(2)指出函數(shù)的定義域;
(3)這塊地長寬各為多少時,場地的面積最大?最大值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,A,B,C,D是平面直角坐標系上的四個點,將這四個點的坐標(x,y)分別代入x-y=k,若在某點處k取得最大值,則該點是( 。
A.點AB.點BC.點CD.點D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=x2-4x+3-2lnx的零點個數(shù)為  ( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知直線l1:x-2y-1=0,直線l2:ax+by-1=0,其中a,b∈{1,2,3,4,5,6},則l1⊥l2的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{12}$C.$\frac{1}{18}$D.$\frac{5}{36}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知位置向量$\overrightarrow{OA}$=(log2(m2+3m-8),log2(2m-2)),$\overrightarrow{OB}$=(1,0),若以OA、OB為鄰邊的平行四邊形OACB的頂點C在函數(shù)y=$\frac{1}{2}$x的圖象上,則實數(shù)m=2或5.

查看答案和解析>>

同步練習冊答案