已知非空集合A={x|2a-2<x<a},B={x|x≤1或x≥2},且A∩B=A,求a的取值范圍.
考點:交集及其運算
專題:集合
分析:若A∩B=A,則A⊆B,然后根據(jù)非空集合得出2a-2<a,再由A⊆B,列出不等式即可.
解答: 解:若A∩B=A,
則A⊆B;
當2a-2<a,即a<2時,A⊆B,
∴a≤1或2a-2≥2,解得a≤1或a≥2
故a≤1.
故a的取值范圍為(-∞,1].
點評:本題考查的知識點是集合的包含關(guān)系及應(yīng)用,其中將已知轉(zhuǎn)化為A⊆B,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=
[x]
x
-a(x≠0)有且僅有3個零點,則a的取值范圍是( 。
A、[
3
4
4
5
]∪[
4
3
3
2
]
B、(
3
4
4
5
]∪[
4
3
,
3
2
C、(
1
2
,
2
3
]∪[
5
4
,
3
2
D、[
1
2
,
2
3
]∪[
5
4
,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中是奇函數(shù),且在(0,+∞)上單調(diào)遞增的是(  )
A、y=
1
x
B、y=|x|
C、y=2x
D、y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x),g(x)的定義域分別為F,G,且F⊆G,若對任意x∈F,都有g(shù)(x)=f(x),則稱g(x)為f(x)在G上的一個“延拓函數(shù)”,已知函數(shù)f(x)=2x(x≤0),若g(x)為f(x)在R上延拓函數(shù),且g(x)是偶函數(shù),則函數(shù)g(x)的解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x),當x∈(0,+∞)時,f(x)=x-2,則不等式f(x)>-1的解集為(  )
A、(1,+∞)
B、(-2,0]∪(2,+∞)
C、(-3,0)∪(1,+∞)
D、(-3,0]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a,b,c滿足a+b+c=0,a2+b2+c2=3,則a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1
+lg(2-x)的定義域為A,g(x)=x2+1的值域為B.設(shè)全集U=R.
(1)求A,B;
(2)求A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=log
1
2
3,b=(
1
2
)
-
1
2
,c=log32,則a,b,c之間的大小關(guān)系為( 。
A、a<c<b
B、a<b<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,函數(shù)f(x)=x+
a2
4x
,g(x)=x-lnx,若對任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,則實數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案