向量
a
=(1,2),
b
=(1,1),且
a
與a+λ
b
的夾角為銳角,則實(shí)數(shù)λ滿足( 。
A、λ<-
5
3
B、λ>-
5
3
C、λ>-
5
3
且λ≠0
D、λ<-
5
3
且λ≠-5
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:由題意可得
a
•(a+λ
b
)=1+λ+2(2+λ)>0,解不等式去掉向量同向的情形即可.
解答: 解:∵
a
=(1,2),
b
=(1,1),
∴a+λ
b
=(1+λ,2+λ),
a
與a+λ
b
的夾角為銳角,
a
•(a+λ
b
)=1+λ+2(2+λ)>0,
解得λ>-
5
3

但當(dāng)λ=0時(shí),
a
與a+λ
b
的夾角為0°,不是銳角,應(yīng)舍去,
故選:C
點(diǎn)評(píng):本題考查數(shù)量積表示兩向量的夾角,去掉同向是夾角問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-2x,x∈[-2,4],則函數(shù)f(x)的值域?yàn)?div id="nybfnxf" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin2x,cos2x),
b
=(
1
2
3
2
),x∈R,且f(x)=
a
b
+|
a
|+|
b
|.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[
π
6
3
],求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+2ex-x-
e2
x
+m (x>0),若f(x)=0有兩個(gè)相異實(shí)根,則實(shí)數(shù)m的取值范圍是( 。
A、(-e2+2e,0)
B、(-e2+2e,+∞)
C、(0,e2-2e)
D、(-∞,-e2+2e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
x+b
x2+4
(b為常數(shù))的最大值為
1
2
,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC,則角A的大小為(  )
A、
π
6
B、
π
3
C、
2
3
π
D、
5
6
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|<π)的部分圖象如圖所示.
(1)求函數(shù)f(x)解析式;
(2)說明y=f(x)的圖象如何由y=sinx的圖象變換得到的(填空)
y=sinx(
 
)→( y=sin(x+
3
)。
 
)→(y=sin(2x+
3
))
 
)→(f(x)=3sin(2x+
3
))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個(gè)判斷:
①y=f(x)的定義域是R,值域是(-
1
2
1
2
];
②點(diǎn)(k,0)是y=f(x)的圖象的對(duì)稱中心,其中k∈Z;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(
1
2
,
3
2
]上是增函數(shù).
則上述判斷中正確的序號(hào)是
 
.(填上所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(π,2π),cosα=
3
5
,則tan(α+
π
4
)
等于
 

查看答案和解析>>

同步練習(xí)冊答案