15.一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同,從中隨機(jī)有放回地抽取3次,每次抽取1張,求下列事件的概率.
(1)求“抽取的卡片上的數(shù)字滿足其中兩張之和等于第三張”的概率;
(2)求“抽取的卡片上的數(shù)字不完全相同”的概率.

分析 (1)將3張卡片有放回的抽取3次,每次抽1張,共有27個(gè)基本事件,抽取的卡片上的數(shù)字滿足其中2張之和等于第3張,包含9個(gè)基本事件,由此利用列舉法能求出“抽取的卡片上的數(shù)字滿足其中兩張之和等于第三張”的概率.
(2)記事件B為“抽取的卡片上數(shù)字不完全相同”,則其對(duì)立事件C為“抽取的卡片上的數(shù)字全相同”,利用對(duì)立事件概率計(jì)算公式能求出“抽取的卡片上的數(shù)字不完全相同”的概率.

解答 解:將3張卡片有放回的抽取3次,每次抽1張,共有27個(gè)基本事件:
(1,1,1)(1,1,2)(1,1,3)(1,2,1)(1,2,2)(1,2,3)(1,3,1)
(1,3,2)(1,3,3)(2,1,1)(2,1,2)(2,1,3)(2,2,1)(2,2,2)
(2,2,3)(2,3,1)(2,3,2)(2,3,3)(3,1,1)(3,1,2)(3,1,3)
(3,2,1)(3,2,2)(3,2,3)(3,3,1)(3,3,2)(3,3,3),
(1)記事件A為“抽取的卡片上的數(shù)字滿足其中2張之和等于第3張”,
則A共包含9個(gè)基本事件,所以$P(A)=\frac{1}{3}$.
(2)記事件B為“抽取的卡片上數(shù)字不完全相同”,
則其對(duì)立事件C為“抽取的卡片上的數(shù)字全相同”,
C共包含3個(gè)基本事件,
所以$P(B)=1-P(C)=1-\frac{3}{27}=\frac{8}{9}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法和對(duì)立事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運(yùn)算法則(  )
①“mn=nm”類比得到“$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow a$”;
②“(m+n)t=mt+nt”類比得到“$(\overrightarrow a+\overrightarrow b)•\overrightarrow c=\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$”;
③“(mn)t=m(nt)”類比得到“$(\overrightarrow a•\overrightarrow b)•\overrightarrow c=\overrightarrow a•(\overrightarrow b•\overrightarrow c)$”
④“t≠0,mt=nt⇒m=n”類比得到“$\overrightarrow c≠\overrightarrow 0,\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c⇒\overrightarrow a=\overrightarrow b$”;
以上的式子中,類比得到的結(jié)論正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知圓C的坐標(biāo)方程為ρ2+2ρ(sinθ+cosθ)-4=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的非負(fù)半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2t}\\{y=1-t}\end{array}\right.$(t為參數(shù)).
(1)求圓C的半徑;
(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在如圖所示的長(zhǎng)方體ABCD-A1B1C1D1中,已知A1(a,0,c),C(0,b,0),則點(diǎn)B1的坐標(biāo)為(a,b,c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)m、n∈R,a、b∈(1,+∞),若am=bn=2016,a+b=24$\sqrt{14}$,則$\frac{1}{m}+\frac{1}{n}$的最大值是( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)x、y、z均為正數(shù),且3x=4y=6z
(1)試求x,y,z之間的關(guān)系;
(2)求使2x=py成立,且與p最近的正整數(shù)(即求與P的差的絕對(duì)值最小的正整數(shù));
(3)試比較3x、4y、6z的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,在正方體ABCD-A1B1C1D1中,直線BD與A1C1的位置關(guān)系是(  )
A.平行B.相交C.異面但不垂直D.異面且垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.近日,國(guó)家經(jīng)貿(mào)委發(fā)出了關(guān)于深入開展增產(chǎn)節(jié)約運(yùn)動(dòng),大力增產(chǎn)市場(chǎng)適銷對(duì)路產(chǎn)品的通知,并發(fā)布了當(dāng)前國(guó)內(nèi)市場(chǎng)185種適銷工業(yè)品和42種滯銷產(chǎn)品的參考目錄.為此,一公司舉行某產(chǎn)品的促銷活動(dòng),經(jīng)測(cè)算該產(chǎn)品的銷售量P萬(wàn)件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用x萬(wàn)元滿足$P=3-\frac{2}{x+1}$(其中0≤x≤a,a為正常數(shù));已知生產(chǎn)該產(chǎn)品還需投入成本(10+2P)萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為$(4+\frac{20}{p})$萬(wàn)元/萬(wàn)件.
(1)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷費(fèi)用x萬(wàn)元的函數(shù);
(2)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)是大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知a>0且a≠1,若函數(shù)f(x)=loga[ax2-(2-a)x+3]在[$\frac{1}{3}$,2]上是增函數(shù),則a的取值范圍是{a|$\frac{1}{6}$<a≤$\frac{2}{5}$ 或a≥$\frac{6}{5}$ }.

查看答案和解析>>

同步練習(xí)冊(cè)答案