已知兩個二次函數(shù)f(x)=ax2+bx+1與g(x)=a2x2+bx+1,其中函數(shù)y=g(x)圖象經(jīng)過點(x1,0)與(x2,0)(x1<x2).

(1)判斷函數(shù)y=f(x)在(-1,1)上是否是單調(diào)函數(shù),并說明理由;

(2)當a>1時,試判斷f(x1)與f(x2)值的正負,并證明你的判斷正確;

(3)設x3,x4是關于x的方程ax2+bx+1=0的兩實根,且x3<x4,試確定當a>1時,x1,x2,x3,x4之間的大小關系,并說明理由.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩個二次函數(shù):f(x)=ax2+bx+1與g(x)=a2x2+bx+1(a>1).若x1,x2(其中x1<x2)是方程f(x)=0的二根;若x3,x4(若是x3<x4)是方程g(x)=0的二根.則 x1,x2,x3,x4的大小關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個二次函數(shù):y=f(x)=ax2+bx+1與y=g(x)=a2x2+bx+1,函數(shù)y=g(x)圖象與x軸有兩個交點,其橫坐標分別為x1,x2(x1<x2).
(1)證明:y=f(x)在(-1,1)上是單調(diào)函數(shù);
(2)當a>1時,設x3,x4是方程ax2+bx+1=0的兩實根,且x3<x4,當a>1時,試判斷x1,x2,x3,x4的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省臨祈市2006—2007學年度上學期高三年級期中統(tǒng)一考試 數(shù)學試題(理) 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

已知兩個二次函數(shù):y=f(x)=ax2+bx+1與y=g(x)=a2x2+bx-1(a>0),函數(shù)y=g(x)的圖像與x軸有兩個交點,其交點橫坐標分別為x1,x2(x1<x2)

(1)

試證:y=f(x)在(-1,1)上是單調(diào)函數(shù)

(2)

當a>1時,設x3,x4是方程ax2+bx+1=0的兩實根,且x3>x4,試判斷x1,x2,x3,x4的大小關系

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶市西南師大附中高三(上)10月月考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知兩個二次函數(shù):f(x)=ax2+bx+1與g(x)=a2x2+bx+1(a>1).若x1,x2(其中x1<x2)是方程f(x)=0的二根;若x3,x4(若是x3<x4)是方程g(x)=0的二根.則 x1,x2,x3,x4的大小關系是( )
A.x1<x3<x4<x2
B.x3<x1<x2<x4
C.x1<x3<x2<x4
D.x3<x1<x4<x2

查看答案和解析>>

同步練習冊答案