【題目】某高中在校學(xué)生2 000人,高一年級(jí)與高二年級(jí)人數(shù)相同并且都比高三年級(jí)多1人.為了響應(yīng)市教育局“陽光體育”號(hào)召,該校開展了跑步和跳繩兩項(xiàng)比賽,要求每人都參加而且只參加其中一項(xiàng),各年級(jí)參與項(xiàng)目人數(shù)情況如下表:

  年級(jí)

項(xiàng)目  

高一年級(jí)

高二年級(jí)

高三年級(jí)

跑步

a

b

c

跳繩

x

y

z

其中a∶b∶c=2∶3∶5,全校參與跳繩的人數(shù)占總?cè)藬?shù)的. 為了了解學(xué)生對(duì)本次活動(dòng)的滿意度,采用分層抽樣從中抽取一個(gè)200人的樣本進(jìn)行調(diào)查,則高二年級(jí)中參與跑步的同學(xué)應(yīng)抽取多少人?

【答案】36

【解析】試題分析:設(shè)高一,高二,高三人數(shù)分別為,則高一,高二,高三人數(shù)分別為667,667,666. 全校參與跳繩的人數(shù)占總?cè)藬?shù)的,所以跑步的人數(shù)為,所以,抽取樣本為,即比例為這樣跑步的應(yīng)抽取,跑步的抽取率所以高二應(yīng)抽取.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, 底面,且, , 、分別是、的中點(diǎn).

(1)求證:平面平面;

(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù), ).以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.

(Ⅰ)設(shè)為曲線上任意一點(diǎn),求的取值范圍;

(Ⅱ)若直線與曲線交于兩點(diǎn), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從兩地區(qū)分別隨機(jī)調(diào)查了40個(gè)用戶,根據(jù)用戶對(duì)產(chǎn)品的滿意度評(píng)分,得到地區(qū)用戶滿意度評(píng)分的頻率分布直方圖和地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表.

地區(qū)用戶滿意度評(píng)分的頻率分布直方圖

地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表

滿意度評(píng)分分組

頻數(shù)

2

8

14

10

6

(1)在答題卡上作出地區(qū)用戶滿意度評(píng)分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,給出結(jié)論即可);

(2)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度從低到高分為三個(gè)等級(jí):

估計(jì)哪個(gè)地區(qū)的滿意度等級(jí)為不滿意的概率大?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國(guó)詩(shī)詞大會(huì)》(二季)亮點(diǎn)頗多,十場(chǎng)比賽每場(chǎng)都有一首特別設(shè)計(jì)的開場(chǎng)詩(shī)詞,在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩(shī)詞排在后六場(chǎng),且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場(chǎng)的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題的必要而不充分條件;

設(shè)命題實(shí)數(shù)滿足方程表示雙曲線.

(1)若“”為真命題,求實(shí)數(shù)的取值范圍;

(2)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,給出四個(gè)結(jié)論:

①函數(shù)是最小正周期為的奇函數(shù);

②函數(shù)的圖像的一條對(duì)稱軸是;

③函數(shù)圖像的一個(gè)對(duì)稱中心是

④函數(shù)的遞增區(qū)間為.則正確結(jié)論的個(gè)數(shù)為( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角梯形中,是邊長(zhǎng)為2的等邊三角形,沿折起,使處,且;然后再將沿折起,使處,且面在面的同側(cè)

() 求證:平面;

() 求平面與平面所構(gòu)成的銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿意度,從交通擁堵不嚴(yán)重的城市和交通擁堵嚴(yán)重的城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評(píng)分的平均值的大小及方差的大小(不要求具體解答過程,給出結(jié)論即可);

(Ⅱ)若得分不低于80分,則認(rèn)為該用戶對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此種交通方式“不認(rèn)同”,請(qǐng)根據(jù)此樣本完成此列聯(lián)表,并局此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);

(Ⅲ)若此樣本中的城市和城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來自城市的概率是多少?

合計(jì)

認(rèn)可

不認(rèn)可

合計(jì)

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案