13.向量$\overrightarrow a=(2,1),\overrightarrow b=(-1,2)$,則$(\overrightarrow a+\overrightarrow b)(\overrightarrow a-\overrightarrow b)$=0.

分析 根據(jù)條件容易求出${\overrightarrow{a}}^{2}$,${\overrightarrow}^{2}$的值,而$(\overrightarrow{a}+\overrightarrow)•(\overrightarrow{a}-\overrightarrow)={\overrightarrow{a}}^{2}-{\overrightarrow}^{2}$,從而求出該數(shù)量積的值.

解答 解:${\overrightarrow{a}}^{2}=5,{\overrightarrow}^{2}=5$;
∴$(\overrightarrow{a}+\overrightarrow)•(\overrightarrow{a}-\overrightarrow)={\overrightarrow{a}}^{2}-{\overrightarrow}^{2}$=5-5=0.
故答案為:0.

點(diǎn)評 考查數(shù)量積的運(yùn)算,以及向量坐標(biāo)的數(shù)量積運(yùn)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.遞增數(shù)列{an}的前n項和為Sn,若(2λ+1)Sn=λan+2,則實(shí)數(shù)λ的取值范圍是$(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{{\sqrt{3}c-a}}=\frac{cosA}{cosB}$.
(Ⅰ)求sinB的值;
(Ⅱ)若a=2$\sqrt{3}$,b=2$\sqrt{6}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+5cosα}\\{y=4+5sinα}\end{array}\right.$,(α為參數(shù)),A,B在曲線C上,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,A,B兩點(diǎn)的極坐標(biāo)分別為A(ρ1,$\frac{π}{6}$),B(ρ2,$\frac{π}{2}$)
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)曲線C的中心為M,求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若$n=3\int_{-\frac{π}{2}}^{\frac{π}{2}}{(sinx+cosx)dx}$,則${(y+\frac{2}{y})^n}$的展開式中的常數(shù)項為160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=axlnx+bx(a≠0)在(1,f(1))處的切線與x軸平行,
(1)試討論f(x)在(0,+∞)上的單調(diào)性;
(2)若存在a∈(e,+∞),對任意的${x_1},{x_2}∈[\frac{1}{3}e,3e]$都有|f(x1)-f(x2)|<(m+eln3)a+3e成立,求實(shí)數(shù)m的取值范圍.(e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow$=(1,2),若向量$\overrightarrow{a}$-λ$\overrightarrow$與向量$\overrightarrow{c}$=(1,-2)垂直,則實(shí)數(shù)λ=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=ax3-xlnx,若?x1、x2∈(0,+∞)且x1≠x2,不等式(x12-x22)(f(x1)-f(x2))>0恒成立,則實(shí)數(shù)a的取值范圍是$[\frac{e}{6},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}的前n項和為Sn,且${a_1}=1,{a_{n+1}}•{a_n}={2^n}(n∈{N^*})$,則S2016=(  )
A.3•21008-3B.22016-1C.22009-3D.22008-3

查看答案和解析>>

同步練習(xí)冊答案