某部隊(duì)駐扎在青藏高原上,那里海拔高、寒冷缺氧、四季風(fēng)沙、沒有新鮮蔬菜,生活條件極為艱苦.但戰(zhàn)士們不計(jì)個(gè)人得失,扎根風(fēng)雪高原,以鋼鐵般的意志,自力更生,克服惡劣的自然環(huán)境.該部隊(duì)現(xiàn)計(jì)劃建造一個(gè)室內(nèi)面積為800m2的矩形蔬菜溫室,在溫室內(nèi),與左、右兩側(cè)及后側(cè)的內(nèi)墻各保留1m寬的通道,與前側(cè)內(nèi)墻保留3m寬的空地.當(dāng)矩形溫室的邊長(zhǎng)各為多少時(shí),蔬菜的種植面積最大?最大種植面積是多少?
考點(diǎn):基本不等式在最值問題中的應(yīng)用
專題:應(yīng)用題,不等式的解法及應(yīng)用
分析:設(shè)出矩形的長(zhǎng)為a與寬b,建立蔬菜面積關(guān)于矩形邊長(zhǎng)的函數(shù)關(guān)系式,利用基本不等式變形求解.
解答: 解:設(shè)蔬菜的種植面積為S,矩形溫室的后側(cè)邊長(zhǎng)為x,則左側(cè)邊長(zhǎng)為
800
x
.S=(x-2)(
800
x
-4)
=-4(x+
400
x
)+808
x+
400
x
≥2•
x•
400
x
=40
,
∴S≤-4•40+808=648
當(dāng)且僅當(dāng)x=
400
x
,即x=20時(shí),取等號(hào).
故當(dāng)矩形溫室的后側(cè)邊長(zhǎng)為20m,左側(cè)邊長(zhǎng)為40m時(shí),蔬菜的種植面積最大,
最大種植面積為648m2
點(diǎn)評(píng):此類問題一般用函數(shù)最值來求解,本題別出心裁,利用基本不等式求解,設(shè)計(jì)巧妙.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)是奇函數(shù)的是( 。
A、f(x)=-|x|
B、f(x)=2x+2-x
C、f(x)=lg(1+x)-lg(1-x)
D、f(x)=x3-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形A1BA2C的邊長(zhǎng)為4,D是A1B的中點(diǎn),E是BA2上的點(diǎn),將△A1DC及△A2EC分別沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C過原點(diǎn)且與x-y-4=0相切,且圓心C在直線x+y=0上.
(1)求圓的方程;
(2)過點(diǎn)P(2,2)的直線l與圓C相交于A,B兩點(diǎn),且|AB|=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐V-ABC中,VA⊥平面ABC,且AC=2,VA=2,∠ABC=90°
(1)求證:BC垂直平面VAB.
(2)求VC與平面ABC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小三角形構(gòu)成,小三角形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小三角形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小三角形.由圖形知f(1)=1,f(2)=3,f(3)=6
(1)求出f(5);
(2)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,.
(Ⅰ)求證:AC⊥平面PBD;
(Ⅱ)若∠BAD=60°,AD=2,PD=3,求二面角P-BC-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(m-3)ex,g(x)=2ax+1+blnx,其中m,a,b∈R,曲線g(x)在x=1處的切線方程為y=3x.
(1)求函數(shù)g(x)的解析式;
(2)若f(x)的圖象恒在g(x)圖象的上方,求m的取值范圍;
(3)討論關(guān)于x的方程f(x)=g(x)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半徑為2
3
、圓心角為60°的扇形的弧AB上任取一點(diǎn)P,作扇形的內(nèi)接矩形PNMQ,使點(diǎn)Q在OA上,點(diǎn)M,N在OB上,設(shè)矩形PNMQ的面積為y.
(Ⅰ)按下列要求求出函數(shù)關(guān)系式并寫出定義域:
①設(shè)PN=x,將y表示成x的函數(shù)關(guān)系式;
②設(shè)∠POB=θ,將y表示成θ的函數(shù)關(guān)系式.
(Ⅱ)請(qǐng)你選用(Ⅰ)中的一個(gè)函數(shù)關(guān)系式,求y的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案