已知命題P:|x-1|<4;q:(x-2)(3-x)>0,則p是q的( 。
分析:直接利用求出p與q的x的解集,利用充要條件的判斷方法判斷即可.
解答:解:命題p:|x-1|<4;⇒-3<x<5;
命題q:(x-2)(3-x)>0⇒2<x<3,
所以,p推不出q,q推出p;
∴p是q的必要而非充分條件.
故選B.
點評:本題考查不等式的解法,充要條件的判定方法,考查邏輯推理能力計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈[1,12],x2-a≥0.命題q:?x0∈R,使得x
 
2
0
+(a-1)x0+1<0.
(1)若p或q為真,p且q為假,求實數(shù)a的取值范圍. 
(2)實數(shù)m分別取什么值時,復(fù)數(shù)z=m+1+(m-1)i是 ①實數(shù)?②虛數(shù)?③純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山一模)已知命題p:“?x∈[1,2],使x2-a<0成立”,若¬p是真命題,則實數(shù)a的取值范圍是
a≤1
a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“|x-1|≤1”,命題q:“x∉Z”,如果“p且q”與“非p”同時為假命題,則滿足條件的x為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江西模擬)已知命題p:|x+1|>2,q:x≥a,且¬p是¬q的充分不必要條件,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:|x+1|≤2,命題q:x≤a,若p是q的充分不必要條件,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案