分析 (1)設(shè)玻璃棒在CC1上的點(diǎn)為M,玻璃棒與水面的交點(diǎn)為N,過(guò)N作NP∥MC,交AC于點(diǎn)P,推導(dǎo)出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推導(dǎo)出△ANP∽△AMC,由此能出玻璃棒l沒入水中部分的長(zhǎng)度.
(2)設(shè)玻璃棒在GG1上的點(diǎn)為M,玻璃棒與水面的交點(diǎn)為N,過(guò)點(diǎn)N作NP⊥EG,交EG于點(diǎn)P,過(guò)點(diǎn)E作EQ⊥E1G1,交E1G1于點(diǎn)Q,推導(dǎo)出EE1G1G為等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=$\frac{3}{5}$,由此能求出玻璃棒l沒入水中部分的長(zhǎng)度.
解答 解:(1)設(shè)玻璃棒在CC1上的點(diǎn)為M,玻璃棒與水面的交點(diǎn)為N,
在平面ACM中,過(guò)N作NP∥MC,交AC于點(diǎn)P,
∵ABCD-A1B1C1D1為正四棱柱,∴CC1⊥平面ABCD,
又∵AC?平面ABCD,∴CC1⊥AC,∴NP⊥AC,
∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,
∵NP∥MC,∴△ANP∽△AMC,
∴$\frac{AN}{AM}$=$\frac{NP}{MC}$,$\frac{AN}{40}=\frac{12}{30}$,得AN=16cm.
∴玻璃棒l沒入水中部分的長(zhǎng)度為16cm.
(2)設(shè)玻璃棒在GG1上的點(diǎn)為M,玻璃棒與水面的交點(diǎn)為N,
在平面E1EGG1中,過(guò)點(diǎn)N作NP⊥EG,交EG于點(diǎn)P,
過(guò)點(diǎn)E作EQ⊥E1G1,交E1G1于點(diǎn)Q,
∵EFGH-E1F1G1H1為正四棱臺(tái),∴EE1=GG1,EG∥E1G1,
EG≠E1G1,
∴EE1G1G為等腰梯形,畫出平面E1EGG1的平面圖,
∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,
∴E1Q=24cm,
由勾股定理得:E1E=40cm,
∴sin∠EE1G1=$\frac{4}{5}$,sin∠EGM=sin∠EE1G1=$\frac{4}{5}$,cos$∠EGM=-\frac{3}{5}$,
根據(jù)正弦定理得:$\frac{EM}{sin∠EGM}$=$\frac{EG}{sin∠EMG}$,∴sin$∠EMG=\frac{7}{25}$,cos$∠EMG=\frac{24}{25}$,
∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=$\frac{3}{5}$,
∴EN=$\frac{NP}{sin∠GEM}$=$\frac{12}{\frac{3}{5}}$=20cm.
∴玻璃棒l沒入水中部分的長(zhǎng)度為20cm.
點(diǎn)評(píng) 本題考查玻璃棒l沒入水中部分的長(zhǎng)度的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ③④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2$\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
1 | 2 | 3 | … | m+n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 14 | C. | 12 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{6}{5}$ | B. | 1 | C. | $\frac{3}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com