(本小題滿分12分)已知 
(1)求的最小值;  
(2)求的值域。
(1) ; (2) 。

試題分析:(I)先根據(jù),得到,再結(jié)合二次函數(shù)的單調(diào)性可知f(x)在x=2處取得最小值。
(II)可以采用換元法令,所以原函數(shù)可轉(zhuǎn)化為二次函數(shù)最值問題研究。
(1) ∵
 ……………………………………………………………2分
在[2,4]上單調(diào)遞增………………………………3分
所以…………………………………………………5分
(2) ∵ =(
                ………………………………………………8分
設(shè)
……………………………………………10分
所以可知當時,即時,
 ,即或4時,
的值域為……………………………12分
點評:掌握一元二次函數(shù)的性質(zhì)是解本題的關(guān)鍵,其中知道對稱軸兩側(cè)單調(diào)性相同,對稱軸一側(cè)才具有單調(diào)性。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知二次函數(shù)滿足以下兩個條件:
①不等式的解集是(-2,0)  ②函數(shù)上的最小值是3 
(Ⅰ)求的解析式;
 (Ⅱ)若點在函數(shù)的圖象上,且
(。┣笞C:數(shù)列為等比數(shù)列
(ⅱ)令,是否存在正實數(shù),使不等式對于一切的恒成立?若存在,指出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)設(shè),.
(1)若恒成立,求實數(shù)的取值范圍;
(2)若時,恒成立,求實數(shù)的取值范圍;
(3)當時,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P={0,1},Q={-1,0,1},f是從P到Q的映射,則滿足f(0)>f(1)的映射有(   )個
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)寧波市的一家報刊點,從報社買進《寧波日報》的價格是每份0.20元,賣出的價格是每份0.3元,賣不掉的報紙可以以每份0.05元的價格退回報社。在一個月(30天計)里,有20天可以賣出400份,其余10天每天只能賣出250份,但是每天從報社買進的份數(shù)必須相同,這個攤主每天從報社買進多少份,才能使得每月所獲利潤最大?并計算他一個月最多可以賺多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)某炮兵陣地位于地面A處,兩觀察所分別位于地面點C和D處, 已知CD=6000m,∠ACD=45°,∠ADC=75°, 目標出現(xiàn)于地面點B處時,測得∠BCD=30°,∠BDC=15°(如圖),求炮兵陣地到目標的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個函數(shù),不在區(qū)間[1,2]上單調(diào)遞減的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象關(guān)于(    )對稱
A.原點B.x軸C.y軸D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=-x2+bx+c圖象的最高點是(-3,1),則b、c的值是……………(  )
A.b=6,c=8B.b=6,c=-8
C.b=-6,c=8D.b=-6,c=-8

查看答案和解析>>

同步練習(xí)冊答案