已知
(1)求函數(shù)在上的最小值
(2)對一切的恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對一切,都有成立
(1)(2)(3)主要是求出函數(shù)的最小值
【解析】
試題分析:解:(1)當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,
(2),則設(shè),
則,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081914425199181182/SYS201308191444494999418164_DA.files/image024.png">,恒成立,
(3)問題等價(jià)于證明,,
由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得
設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對一切,都有成立
考點(diǎn):導(dǎo)數(shù)的應(yīng)用
點(diǎn)評(píng):導(dǎo)數(shù)常應(yīng)用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。本題是應(yīng)用導(dǎo)數(shù)求函數(shù)的最小值、解決不等式中參數(shù)的取值范圍和證明不等式。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西師大附中高三年級(jí)上學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題
已知
(1)求函數(shù)在上的最小值;
(2)對一切恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對一切,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市高三上學(xué)期半期考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知.
(1)求函數(shù)在上的最小值;
(2)對一切恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對一切,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省唐山市高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)已知
(1)求函數(shù)在上的最小值;
(2)對一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三10月月考理科數(shù)學(xué)卷 題型:解答題
已知
(1)求函數(shù)在>0上的最小值;
(2)對一切恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對一切,都有>成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com