函數(shù)f(x)=Msin(ωx+φ)(ω>0)在區(qū)間[a,b]上是增函數(shù),且f(a)=-M,f(b)=M,則函數(shù)g(x)=Mcos(ωx+φ)在[a,b]上( )
A.是增函數(shù)
B.是減函數(shù)
C.可以取得最大值M
D.可以取得最小值-M
【答案】
分析:由函數(shù)f(x)=Msin(ωx+φ)(ω>0)在區(qū)間[a,b]上是增函數(shù),且f(a)=-M,f(b)=M,可知函數(shù)f(x)為奇函數(shù)且M>0,從而可得區(qū)間[a,b]關(guān)于原點對稱,φ=0,代入g(x)中結(jié)合余弦函數(shù)的單調(diào)性判斷.
解答:解:∵函數(shù)f(x)在區(qū)間[a,b]上是增函數(shù),且f(a)=-M,f(b)=M
∴M>0且區(qū)間[a,b]關(guān)于原點對稱
從而函數(shù)函數(shù)f(x)為奇函數(shù)φ=2kπ
∴函數(shù)g(x)=Mcos(ωx+φ)=Mcoswx在區(qū)間[a,0]是增函數(shù),[0,b]減函數(shù)
∴函數(shù)g(x)=Mcos(ωx+φ)在區(qū)間[a,b]上取得最大值M,最小值為0
故選C.
點評:本題綜合考查了正弦函數(shù)與余弦函數(shù)的圖象及性質(zhì),利用整體思想進行求值,在解題時要熟練運用相關(guān)結(jié)論:y=Asin(wx+φ)為奇(偶)函數(shù)⇒φ=kπ(φ=kπ+
)(k∈Z)