下列命題:①有一個(gè)實(shí)數(shù)不能做除數(shù); ②棱柱是多面體; ③所有方程都有實(shí)數(shù)解;  ④有些三角形是銳角三角形;其中特稱命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:利用特稱命題與全稱命題的定義即可判斷出.
解答: 解:①有一個(gè)實(shí)數(shù)不能做除數(shù),是特稱命題;
②棱柱是多面體,屬于全稱命題;
 ③所有方程都有實(shí)數(shù)解,屬于全稱命題;
  ④有些三角形是銳角三角形,屬于特稱命題.
綜上可知:只有①④屬于特稱命題.
故選:B.
點(diǎn)評(píng):本題考查了特稱命題與全稱命題的意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(m-1)lnx+mx2+1(m∈R)
(1)討論f(x)的單調(diào)性;
(2)若對(duì)任意的x1>x2>0,總有f(x1)-f(x2)>2(x1-x2)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙M經(jīng)過雙曲線S:
x2
9
-
y2
16
=1的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),圓心M在雙曲線上S上,則圓心M到雙曲線S的中心的距離為( 。
A、
13
4
7
3
B、
15
4
8
3
C、
13
3
D、
16
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是不重合的直線,α,β是不重合的平面,給出下列命題:
①若m⊥α,m?β,則α⊥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③如果m?α,n?α,m,n是異面直線,則n與α相交;
④若α∩β=m,n∥m,且n?β,則n∥α,且n∥β.
其中正確命題的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在5×5的棋盤中,放入3顆黑子和2顆白子,它們均不在同一行且不在同一列,則不同的排列方法種數(shù)為( 。
A、150B、200
C、600D、1200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax3-3
2x2+1
(a>2),若在區(qū)間[1,2]上f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于一切x∈[-2,
1
2
],不等式ax3-x2+x+1≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC,∠PAC=∠ABC=90°,PA=AC=2BC,平面PAC⊥平面ABC,D、E分別是PB、PC的中點(diǎn).
(Ⅰ)求證:BC⊥平面PAB;
(Ⅱ)求二面角P-ED-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
2
x

(1)求證:f(x)在x∈[1,+∞)上是增函數(shù); 
(2)當(dāng)x>0時(shí),若f(x)≥f(m)恒成立,求正實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案