坐標(biāo)系與參數(shù)方程
已知圓錐曲線為參數(shù))和定點(diǎn)F1,F(xiàn)2是圓錐曲線的左右焦點(diǎn)。
(1)求經(jīng)過(guò)點(diǎn)F2且垂直于直線AF1的直線l的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程。

(1) (2)

解析試題分析:(1)利用三角函數(shù)中的平方關(guān)系消去參數(shù)θ,將圓錐曲線化為普通方程,從而求出其焦點(diǎn)坐標(biāo),再利用直線的斜率求得直線L的傾斜角,最后利用直線的參數(shù)方程形式,即可得到直線L的參數(shù)方程.
(2)設(shè)P(ρ,θ)是直線AF2上任一點(diǎn),利用正弦定理列出關(guān)于ρ、θ的關(guān)系式,化簡(jiǎn)即得直線AF2的極坐標(biāo)方程.
解:(1)圓錐曲線
化為普通方程) 
所以則直線的斜率
于是經(jīng)過(guò)點(diǎn)且垂直于直線的直線l的斜率
直線l的傾斜角為
所以直線l參數(shù)方程,
(2)直線AF2的斜率k=- ,傾斜角是120°,設(shè)P(ρ,θ)是直線AF2上任一點(diǎn)即ρsin(120°-θ)=sin60°,化簡(jiǎn)得ρcosθ+ρsinθ=,故可知
考點(diǎn):曲線的極坐標(biāo)方程、直線的參數(shù)方程
點(diǎn)評(píng):本小題主要考查簡(jiǎn)單曲線的極坐標(biāo)方程、直線的參數(shù)方程、橢圓的參數(shù)方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面直角坐標(biāo)系xOy,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,P點(diǎn)的極坐標(biāo)為,曲線C的極坐標(biāo)方程為 
(Ⅰ)寫(xiě)出點(diǎn)P的直角坐標(biāo)及曲線C的普通方程;
(Ⅱ)若為C上的動(dòng)點(diǎn),求中點(diǎn)到直線(t為參數(shù))距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系.x0y中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線 C的極坐標(biāo)方程為: .
(I)求曲線的直角坐標(biāo)方程;
(II)若直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,),若直線過(guò)點(diǎn)P,且傾斜角為,圓C以M為圓心,4為半徑。
(I)求直線的參數(shù)方程和圓C的極坐標(biāo)方程;
(II)試判定直線與圓C的位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

直角坐標(biāo)系和極坐標(biāo)系的原點(diǎn)與極點(diǎn)重合,軸正半軸與極軸重合,單位長(zhǎng)度相同,在直角坐標(biāo)系下,曲線C的參數(shù)方程為為參數(shù))。
(1)在極坐標(biāo)系下,曲線C與射線和射線分別交于A,B兩點(diǎn),求的面積;
(2)在直角坐標(biāo)系下,直線的參數(shù)方程為為參數(shù)),求曲線C與直線的交點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,射線的方程為,又的交點(diǎn)為,的除極點(diǎn)外的另一個(gè)交點(diǎn)為,當(dāng)時(shí),
(1)求的普通方程,的直角坐標(biāo)方程;
(2)設(shè)軸正半軸的交點(diǎn)為,當(dāng)時(shí),求直線的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)把下列的極坐標(biāo)方程化為直角坐標(biāo)方程(并說(shuō)明對(duì)應(yīng)的曲線):
      ②
(2)把下列的參數(shù)方程化為普通方程(并說(shuō)明對(duì)應(yīng)的曲線):
   ④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:
(I)求曲線C1的普通方程;
(II)曲線C2的方程為,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分分)
在平面直角坐標(biāo)系xoy中,已知四邊形OABC是平行四邊形,,點(diǎn)M是OA的中點(diǎn),點(diǎn)P在線段BC上運(yùn)動(dòng)(包括端點(diǎn)),如圖
(Ⅰ)求∠ABC的大;
(II)是否存在實(shí)數(shù)λ,使?若存在,求出滿足條件的實(shí)數(shù)λ的取值范圍;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案