【題目】已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個(gè)極值點(diǎn).
(1)求a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
【答案】(1) ;(2)見(jiàn)解析.
【解析】試題分析:(1)先求導(dǎo),再由是函數(shù)的一個(gè)極值點(diǎn),即建立方程,解之即可;(2)由(1)確定函數(shù)的解析式,再由和求得單調(diào)區(qū)間,從而可得極值.
試題解析:(1)因?yàn)?/span>,所以,
因此.
(2)由(1)知, , , .
當(dāng) 時(shí), ;當(dāng) 時(shí), .
所以f(x)的單調(diào)增區(qū)間是 、 ;f(x)的單調(diào)減區(qū)間是 .
極大值為 ,極小值為
【方法點(diǎn)晴】本題主要考查的是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的極值,屬于難題.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性進(jìn)一步求函數(shù)極值的步驟:①確定函數(shù)的定義域;②對(duì)求導(dǎo);③令,解不等式得的范圍就是遞增區(qū)間;令,解不等式得的范圍就是遞減區(qū)間;④根據(jù)單調(diào)性求函數(shù)的極值及最值(閉區(qū)間上還要注意比較端點(diǎn)處函數(shù)值的大。.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中:
①線性回歸方程必過(guò)點(diǎn);
②在回歸方程中,當(dāng)變量增加一個(gè)單位時(shí), 平均增加5個(gè)單位;
③在回歸分析中,相關(guān)指數(shù)為0.80的模型比相關(guān)指數(shù)為0.98的模型擬合的效果要好;
④在回歸直線中,變量時(shí),變量的值一定是-7.
其中假命題的個(gè)數(shù)是 ( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x/元 | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y/件 | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求線性回歸方程=x+,其中=-20, =- .
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水產(chǎn)試驗(yàn)廠實(shí)行某種魚(yú)的人工孵化,10 000個(gè)魚(yú)卵能孵化8 513尾魚(yú)苗,根據(jù)概率的統(tǒng)計(jì)定義解答下列問(wèn)題:
(1)這種魚(yú)卵的孵化率(孵化概率)是多少?
(2)30 000個(gè)魚(yú)卵大約能孵化多少尾魚(yú)苗?
(3)要孵化5 000尾魚(yú)苗,大概需要多少個(gè)魚(yú)卵?(精確到百位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面平面, 為的中點(diǎn), 是棱上的點(diǎn), , , .
(1)求證:平面平面;
(2)若二面角大小為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓和直線: ,橢圓的離心率,坐標(biāo)原點(diǎn)到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點(diǎn),若直線過(guò)點(diǎn)且與橢圓相交于兩點(diǎn),試判斷是否存在直線,使以為直徑的圓過(guò)點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)轉(zhuǎn)盤游戲,轉(zhuǎn)盤被平均分成10等份(如圖所示),轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.游戲規(guī)則如下:兩個(gè)人參加,先確定猜數(shù)方案,甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤,乙猜,若猜出的結(jié)果與轉(zhuǎn)盤轉(zhuǎn)出的數(shù)字所表示的特征相符,則乙獲勝,否則甲獲勝.猜數(shù)方案從以下三種方案中選一種:
A.猜“是奇數(shù)”或“是偶數(shù)”
B.猜“是4的整數(shù)倍數(shù)”或“不是4的整數(shù)倍數(shù)”
C.猜“是大于4的數(shù)”或“不是大于4的數(shù)”
請(qǐng)回答下列問(wèn)題:
(1)如果你是乙,為了盡可能獲勝,你將選擇哪種猜數(shù)方案,并且怎樣猜?為什么?
(2)為了保證游戲的公平性,你認(rèn)為應(yīng)制定哪種猜數(shù)方案?為什么?
(3)請(qǐng)你設(shè)計(jì)一種其他的猜數(shù)方案,并保證游戲的公平性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的切線經(jīng)過(guò)點(diǎn)
(1)討論函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com