【題目】已知點(diǎn)(1,2)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點(diǎn),數(shù)列{an}的前n項(xiàng)和Sn=f(n)﹣1.
求數(shù)列{an}的通項(xiàng)公式.

【答案】解:把點(diǎn)(1,2)代入函數(shù)f(x)=ax , 得a=2.
∴Sn=f(n)﹣1=2n﹣1,
當(dāng)n=1時(shí),a1=S1=21﹣1=1,
當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=(2n﹣1)﹣(2n﹣1﹣1)=2n﹣1
經(jīng)驗(yàn)證可知n=1時(shí),也適合上式,
∴an=2n﹣1
【解析】把點(diǎn)(1,2)代入函數(shù)f(x)=ax , 得a=2.可得:Sn=f(n)﹣1=2n﹣1,利用遞推關(guān)系即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握通項(xiàng)公式:;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五面體中,四邊形是菱形, 是邊長(zhǎng)為2的正三角形, ,

(1)證明: ;

(2)若點(diǎn)在平面內(nèi)的射影,求與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的圖象在處的切線方程;

(2)若任意,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè), ,

證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是綿陽市某小區(qū)100戶居民2014年平均用水量(單位:t)的頻率分布直方圖,則該小區(qū)2014年的月平均用水量的眾數(shù),中位數(shù)的估計(jì)值分別是(

A.2,2.5
B.2,2.02
C.2.25,2.5
D.2.25,2.02

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中, =(6,1), =(x,y), =(﹣2,﹣3).

(1)若 ,求x與y滿足的關(guān)系式;
(2)滿足(1)的同時(shí)又有 ,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了分析某籃球運(yùn)動(dòng)員在比賽中發(fā)揮的穩(wěn)定程度,統(tǒng)計(jì)了運(yùn)動(dòng)員在8場(chǎng)比賽中的得分,用莖葉圖表示如圖,則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在正項(xiàng)等比數(shù)列{an}中,a1=1,a2a4=16,則|a1﹣12|+|a2﹣12|+…+|a8﹣12|=(
A.224
B.225
C.226
D.256

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:點(diǎn)P在直徑AB=1的半圓上移動(dòng)(點(diǎn)P不與A,B重合),過P作圓的切線PT且PT=1,∠PAB=α,

(1)當(dāng)α為何值時(shí),四邊形ABTP面積最大?
(2)求|PA|+|PB|+|PC|的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合 ,B={x|2<x<9}.
(1)分別求:R(A∩B),(RB)∪A;
(2)已知C={x|2a<x<a+3},若CB,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案