19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x|,x≤m}\\{{x}^{2}-2mx+4m,x>m}\end{array}\right.$,其中m>0,若存在實(shí)數(shù)b,使得關(guān)于x的方程f(x)=b,有三個(gè)不同的根,則m的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.($\frac{1}{3}$,1)D.(3,+∞)

分析 作出函數(shù)f(x)的圖象,依題意,可得4m-m2<m(m>0),解之即可.

解答 解:當(dāng)m>0時(shí),函數(shù)f(x)=$\left\{\begin{array}{l}{|x|,x≤m}\\{{x}^{2}-2mx+4m,x>m}\end{array}\right.$的圖象如圖:
∵x>m時(shí),f(x)=x2-2mx+4m=(x-m)2+4m-m2>4m-m2,
∴y要使得關(guān)于x的方程f(x)=b有三個(gè)不同的根,
必須4m-m2<m(m>0),
即m2>3m(m>0),
解得m>3,
∴m的取值范圍是(3,+∞),
故選:D

點(diǎn)評(píng) 本題考查根的存在性及根的個(gè)數(shù)判斷,數(shù)形結(jié)合思想的運(yùn)用是關(guān)鍵,分析得到4m-m2<m是難點(diǎn),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求經(jīng)過點(diǎn)(-3,-1),且與直線x-3y-1=0平行的直線的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在正方體ABCD-A1B1C1D1中,棱長(zhǎng)為a,E是棱DD1的中點(diǎn)
(1)求三棱錐E-A1B1B的體積;
(2)在棱C1D1上是否存在一點(diǎn)F,使B1F∥平面A1BE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\sqrt{-2+lo{g}_{2}x}$的定義域是( 。
A.(0,4)B.(4,+∞)C.[4,+∞)D.(-4,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中與函數(shù)y=x相等的函數(shù)是( 。
A.y=log22xB.y=$\sqrt{{x}^{2}}$C.y=2${\;}^{lo{g}_{2}x}$D.y=($\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=xm-$\frac{2}{x}$,且f(3)=$\frac{7}{3}$.
(Ⅰ)求函數(shù)f(x)的解析式,并判斷函數(shù)f(x)的奇偶性.
(Ⅱ)證明函數(shù)f(x)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{m}$=(cos$\frac{x}{2}$-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1.
(Ⅰ)若x∈[$\frac{π}{2}$,π],求f(x)的最小值及對(duì)應(yīng)的x的值;
(Ⅱ)若x∈[0,$\frac{π}{2}$],f(x)=$\frac{11}{10}$,求sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在R上定義運(yùn)算?:x?y=x(1+y),若不等式:(x-a)?(x+a)<2對(duì)實(shí)數(shù)x∈[-2,2]恒成立,則a的范圍為(-∞,$\frac{-1-\sqrt{17}}{2}$)∪($\frac{-1+\sqrt{17}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.有5根細(xì)木棍,長(zhǎng)度分別為1、3、5、7、9(cm),從中任取三根,能搭成三角形的概率為(( 。
A.$\frac{3}{20}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{3}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案