已知等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且a1,
1
2
a3,2a2
成等差數(shù)列,則
a9+a10
a7+a8
=
 
分析:先根據(jù)等差中項(xiàng)的性質(zhì)可知得2×(
1
2
a3
)=a1+2a2,進(jìn)而利用通項(xiàng)公式表示出q2=1+2q,求得q,然后把所求的式子利用等比數(shù)列的通項(xiàng)公式化簡后,將q的值代入即可求得答案.
解答:解:依題意可得2×(
1
2
a3
)=a1+2a2
即,a3=a1+2a2,整理得q2=1+2q,
求得q=1±
2
,
∵各項(xiàng)都是正數(shù),
∴q>0,q=1+
2
,
a9+a10
a7+a8
=
a1q8 +a1q9
a1q6+a1q7
=q2=3+2
2

故答案為:3+2
2
點(diǎn)評:本題主要考查了等差數(shù)列和等比數(shù)列的性質(zhì).考查了學(xué)生綜合分析的能力和對基礎(chǔ)知識的理解.學(xué)生在求出q值后應(yīng)根據(jù)等比數(shù)列的各項(xiàng)都為正數(shù),舍去不合題意的公比q的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊答案