過原點(diǎn)的直線交雙曲線xy=
2
于P、Q兩點(diǎn),現(xiàn)將坐標(biāo)平面沿x軸折成直二面角,則折后線段PQ的長(zhǎng)度的最小值等于( 。
A、4
B、2
2
C、2
D、
2
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程,空間位置關(guān)系與距離,空間角
分析:過P點(diǎn)向x軸作垂線,垂足為C,過Q點(diǎn)x軸作垂線,垂足為D,分別求出PC,QD,CD的長(zhǎng),然后代入異面直線上兩點(diǎn)間的距離公式,即可求得.
解答: 解:由題意可設(shè)P(x0,
2
x0
) ,Q(-x0,-
2
x0
)
(x0>0),
過P點(diǎn)向x軸作垂線,垂足為C,過Q點(diǎn)向x軸作垂線,垂足為D,
則PC=QD=|
2
x0
|,CD=2|x0|,
則由異面直線上兩點(diǎn)間的距離公式,
可得折后|PQ|2=(2x02+(
2
x0
2+(
2
x0
2-2•(
2
x0
2•cos90°=4x02+
4
x02
≥8,
故當(dāng)且僅當(dāng)x0=1,|PQ|的最小值為2
2
,
故選B.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是雙曲線方程和運(yùn)用,空間點(diǎn)到點(diǎn)的距離,其中熟練掌握異面直線上兩點(diǎn)之間的距離公式,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x+1|+|x-3|≥a+
4
a
對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x2-mx-8在[5,20]具有單調(diào)性,則實(shí)數(shù)的取值范圍為( 。
A、(-∞,-160]∪[160,+∞)
B、(-∞,40]∪[160,+∞)
C、(-∞,-160]∪[40,+∞)
D、[40,160]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x→∞,下列函數(shù)均有極限,用極限與無窮小之和將他們表示出來.
(1)f(x)=
x3
x3-1
;
(2)f(x)=
1-x2
1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
1
x
-1.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m∈R,對(duì)任意的a∈(-1,1),總存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是定義在區(qū)間[-2,2]的函數(shù)y=f(x),則f(x)的減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2x=5,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在等比數(shù)列{an}中,a5=162,公比q=3,前n項(xiàng)和Sn=242,求首項(xiàng)a1和項(xiàng)數(shù)n.
(2)數(shù)列{an}中,an=
1
(n+1)(n+3)
(n∈N*)
,求數(shù)列{an}的前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(-3,2)是坐標(biāo)平面內(nèi)一點(diǎn),若拋物線y2=2x的焦點(diǎn)為F,點(diǎn)Q是該拋物線上的一動(dòng)點(diǎn),則|MQ|-|QF|的最小值是( 。
A、
7
2
B、3
C、
5
2
D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案