【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請全校名同學(xué)每人隨機(jī)寫下一個(gè)都小于的正實(shí)數(shù)對;再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值,那么可以估計(jì)的值約為(

A.B.C.D.

【答案】D

【解析】

由試驗(yàn)結(jié)果知01之間的均勻隨機(jī)數(shù) ,滿足,面積為1,再計(jì)算構(gòu)成鈍角三角形三邊的數(shù)對,滿足條件的面積,由幾何概型概率計(jì)算公式,得出所取的點(diǎn)在圓內(nèi)的概率是圓的面積比正方形的面積,即可估計(jì)的值.

解:根據(jù)題意知,名同學(xué)取對都小于的正實(shí)數(shù)對,即,

對應(yīng)區(qū)域?yàn)檫呴L為的正方形,其面積為

若兩個(gè)正實(shí)數(shù)能與構(gòu)成鈍角三角形三邊,則有,

其面積;則有,解得

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)是曲線為參數(shù))上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,以極點(diǎn)為中心,將線段順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線

1)求曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,點(diǎn)的坐標(biāo)為,射線與曲線分別交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).

表中,.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時(shí),燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3sin2θ)=12,直線l的參數(shù)方程為t為參數(shù)),直線l與曲線C交于M,N兩點(diǎn).

1)若點(diǎn)P的極坐標(biāo)為(2,π),求|PM||PN|的值;

2)求曲線C的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請全校名同學(xué)每人隨機(jī)寫下一個(gè)都小于的正實(shí)數(shù)對;再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值,那么可以估計(jì)的值約為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從秦朝統(tǒng)一全國幣制到清朝末年,圓形方孔銅錢(簡稱孔方兄是我國使用時(shí)間長達(dá)兩千多年的貨幣.如圖1,這是一枚清朝同治年間的銅錢,其邊框是由大小不等的兩同心圓圍成的,內(nèi)嵌正方形孔的中心與同心圓圓心重合,正方形外部,圓框內(nèi)部刻有四個(gè)字同治重寶.某模具廠計(jì)劃仿制這樣的銅錢作為紀(jì)念品,其小圓內(nèi)部圖紙?jiān)O(shè)計(jì)如圖2所示,小圓直徑1厘米,內(nèi)嵌一個(gè)大正方形孔,四周是四個(gè)全等的小正方形(邊長比孔的邊長。,每個(gè)正方形有兩個(gè)頂點(diǎn)在圓周上,另兩個(gè)頂點(diǎn)在孔邊上,四個(gè)小正方形內(nèi)用于刻銅錢上的字.設(shè),五個(gè)正方形的面積和為

1)求面積關(guān)于的函數(shù)表達(dá)式,并求的范圍;

2)求面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)實(shí)力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實(shí)現(xiàn)翻番.同時(shí)該家庭的消費(fèi)結(jié)構(gòu)隨之也發(fā)生了變化,現(xiàn)統(tǒng)計(jì)了該家庭這兩年不同品類的消費(fèi)額占全年總收入的比例,得到了如下折線圖:

則下列結(jié)論中正確的是( )

A. 該家庭2018年食品的消費(fèi)額是2014年食品的消費(fèi)額的一半

B. 該家庭2018年教育醫(yī)療的消費(fèi)額與2014年教育醫(yī)療的消費(fèi)額相當(dāng)

C. 該家庭2018年休閑旅游的消費(fèi)額是2014年休閑旅游的消費(fèi)額的五倍

D. 該家庭2018年生活用品的消費(fèi)額是2014年生活用品的消費(fèi)額的兩倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)歷年大學(xué)生就業(yè)統(tǒng)計(jì)資料顯示:某大學(xué)理工學(xué)院學(xué)生的就業(yè)去向涉及公務(wù)員、教師、金融、公司和自主創(chuàng)業(yè)等五大行業(yè)2020屆該學(xué)院有數(shù)學(xué)與應(yīng)用數(shù)學(xué)、計(jì)算機(jī)科學(xué)與技術(shù)和金融工程等三個(gè)本科專業(yè),畢業(yè)生人數(shù)分別是70人,140人和210人現(xiàn)采用.分層抽樣的方法,從該學(xué)院畢業(yè)生中抽取18人調(diào)查學(xué)生的就業(yè)意向.

1)應(yīng)從該學(xué)院三個(gè)專業(yè)的畢業(yè)生中分別抽取多少人?

2)國家鼓勵(lì)大學(xué)生自主創(chuàng)業(yè),在抽取的18人中,就業(yè)意向恰有三個(gè)行業(yè)的學(xué)生有5人為方便統(tǒng)計(jì),將恰有三個(gè)行業(yè)就業(yè)意向的這5名學(xué)生分別記為、、、,統(tǒng)計(jì)如下表:

公務(wù)員

×

×

教師

×

×

金融

×

公式

×

×

自主創(chuàng)業(yè)

×

×

其中“○”表示有該行業(yè)就業(yè)意向,“×”表示無該行業(yè)就業(yè)意向.

現(xiàn)從、、、、5人中隨機(jī)抽取2人接受采訪.設(shè)為事件“抽取的2人中至少有一人有自主創(chuàng)業(yè)意向”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐的底面中,,,平面,的中點(diǎn),且

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點(diǎn),使得,若存在指出點(diǎn)的位置,若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案