已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
5
3
,且直線y=x+
b
2
是拋物線y2=4x的一條切線.
(1)求橢圓的方程;
(2)過(guò)橢圓的左頂點(diǎn)A的l交y軸于Q.與橢圓交于R,過(guò)原點(diǎn)O且平行于l的射線交橢圓于S.求證:|AQ|,
2
|OS|,|AR|成等比數(shù)列.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專(zhuān)題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用直線y=x+
b
2
是拋物線y2=4x的一條切線,可求b,
c
a
=
5
3
,得a=3,c=
5
,即可求橢圓C的方程;
(2)求出Q的坐標(biāo),直y=k(x+3)代入橢圓方程,求出|AQ|、|AR|,y=kx代入橢圓方程,求出2|OS|2,即可得出結(jié)論.
解答: (1)解:因?yàn)橹本y=x+
b
2
是拋物線y2=4x的一條切線,
所以方程(x+
b
2
2=4x的△=0,
所以b=2…(2分)
c
a
=
5
3
,得a=3,c=
5
…(4分)
所以橢圓的方程為
x2
9
+
y2
4
=1
…(5分)
(2)由題意可知直線l的斜率存在且不為零,
設(shè)直線l的方程為y=k(x+3),則Q(0,3k)…(6分)
由y=k(x+3)代入橢圓方程,得R(
12-27k2
4+9k2
24k
4+9k2
)…(7分)
所以|AQ|=3
1+k2
…(8分)
|AR|=
24
4+9k2
1+k2
…9分
所以|AQ||AR|=
72(1+k2)
4+9k2
…(10分)
設(shè)S(x1,y1),由y=kx代入橢圓方程,得x12=
36
4+9k2
,x22=
36k2
4+9k2
…(11分)
所以2|OS|2=
72(1+k2)
4+9k2
…(12分)
所以|AQ||AR|=2|OS|2,即:|AQ|,
2
|OS|,|AR|成等比數(shù)列…(13分)
點(diǎn)評(píng):本題考查橢圓的方程,考查直線與橢圓的位置關(guān)系.考查等比數(shù)列,正確求出:|AQ|,
2
|OS|,|AR|是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象是由y=sinx圖象經(jīng)過(guò)如下三個(gè)步驟變化得到的:
①將y=sinx的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
;
②將①中圖象整體向左平移
π
6
個(gè)單位;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍.
(I)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,若f(A)=
3
,a=
2
,b+c=
6
,求△ABC面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin2x+cos2x+1
2cosx

(Ⅰ)求f(x)的定義域和值域;
(Ⅱ)若曲線f(x)在點(diǎn)P(x0,f(x0))(-
π
2
<x0
π
2
)處的切線平行直線y=
3
x,求在點(diǎn)P處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(1)設(shè)
a
b
的夾角為θ,解關(guān)于x的不等式:log3(2x-1)≤21-sinθ
(2)若存在不同時(shí)為0的實(shí)數(shù)k和t,使
x
=a+(t-3)b,
y
=-ka+tb,且
x
y
,試求函數(shù)關(guān)系式k=f(t);
(3)求函數(shù)k=f(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a2+a4=14,S7=70
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
2Sn-25n
n
,求數(shù)列{bn}的前n項(xiàng)和Tn,并求出Tn<0時(shí)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E是線段B1D1上一點(diǎn).
(1)求證:B1D1∥平面A1BD;
(2)求點(diǎn)E到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),其右焦點(diǎn)為(1,0),并且經(jīng)過(guò)點(diǎn)(
2
2
3
2
),直線l與C相交于M、N兩點(diǎn),l與x軸、y軸分別相交于P、Q兩點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)判斷是否存在直線l,使得P、Q是線段MN的兩個(gè)三等分點(diǎn),若存在,求出直線l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方形ABCD的頂點(diǎn)A,C在拋物線y2=4x上,一條對(duì)角線BD在直線y=-
1
2
x+2上.
(Ⅰ)求AC所在的直線方程;
(Ⅱ)求正方形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下四個(gè)問(wèn)題,①x,輸出它的相反數(shù).②求面積為6的正方形的周長(zhǎng).③求三個(gè)數(shù)a,b,c中輸入一個(gè)數(shù)的最大數(shù).④求函數(shù)的函數(shù)值.其中不需要用條件語(yǔ)句來(lái)描述其算法的有
 
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案