8.方程($\frac{1}{3}$)x+x-2=0的解的個(gè)數(shù)是2.

分析 由題意可得,即求函數(shù)y=($\frac{1}{3}$)x的圖象和直線y=2-x的交點(diǎn)的個(gè)數(shù),數(shù)形結(jié)合可得結(jié)論.

解答 解:方程($\frac{1}{3}$)x+x-2=0的解的個(gè)數(shù),即函數(shù)y=($\frac{1}{3}$)x 的圖象和直線y=2-x的交點(diǎn)的個(gè)數(shù),
如圖所示:
可得函數(shù)y=($\frac{1}{3}$)x的圖象和直線y=2-x的交點(diǎn)的個(gè)數(shù)為2,
故答案為:2.

點(diǎn)評(píng) 本題主要考查方程根的存在性以及個(gè)數(shù)判斷,函數(shù)的圖象和性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合與轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知集合A={x|-9<x<6},集合B={x|x2-3ax+2a2=0,x∈R},且B⊆A,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$bx2+x,連續(xù)拋擲兩顆骰子得到的點(diǎn)數(shù)分別是a,b,則函數(shù)f′(x)在x=1處取得最值的概率是( 。
A.$\frac{1}{36}$B.$\frac{1}{18}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)對(duì)于任意實(shí)數(shù)a(a≠0)和b,求$\frac{|a+b|+|a-2b|}{|a|}$的最小值;
(2)在(1)的條件下,不等式|a+b|+|a-2b|≥|a|(|x-1|+|x-2|)恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|x+2|+|x+m|(m<2),若f(x)的最小值為1.
(1)試求實(shí)數(shù)m的值;
(2)求證:log2(2a+2b)-m≥$\frac{a+b}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,直線?的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(以t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=cosθ.
(Ⅰ)把C的極坐標(biāo)方程化為普通方程;
(Ⅱ)求?與C交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.為了調(diào)查某地區(qū)成年人血液的一項(xiàng)指標(biāo),現(xiàn)隨機(jī)抽取了成年男性、女性各10人組成的一個(gè)樣本,對(duì)他們的這項(xiàng)血液指標(biāo)進(jìn)行了檢測(cè),得到了如下莖葉圖.根據(jù)醫(yī)學(xué)知識(shí),我們認(rèn)為此項(xiàng)指標(biāo)大于40為偏高,反之即為正常.
(Ⅰ)依據(jù)上述樣本數(shù)據(jù)研究此項(xiàng)血液指標(biāo)與性別的關(guān)系,完成下列2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為此項(xiàng)血液指標(biāo)與性別有關(guān)系?
正常偏高合計(jì)
男性
女性
合計(jì)
(Ⅱ)現(xiàn)從該樣本中此項(xiàng)血液指標(biāo)偏高的人中隨機(jī)抽取2人去做其它檢測(cè),求恰好有一名男性和一名女性被抽到的概率.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知△ABC的三個(gè)內(nèi)角A、B、C成等差數(shù)列,面積為10$\sqrt{3}$cm2,周長(zhǎng)為20cm,求△ABC的三邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求解關(guān)于x的不等式:3x2-ax-a>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案