在圓中有結(jié)論“經(jīng)過(guò)圓心的任意弦的兩端點(diǎn)與圓上任意一點(diǎn)(除這兩個(gè)端點(diǎn)外)的連線的斜率之積為定值-1”是正確的.通過(guò)類比,對(duì)于橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,我們有結(jié)論“______”成立.
設(shè)經(jīng)過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦AB,且 A(x1,y1),則B(-x1,-y1),P(x0,y0),則kAP•kBP=
y20
-
y21
x20
-
x21

由橢圓方程得y2=b2(1-
x2
a2
),∴①式即為kAP•kBP=
b2(1-
x02
a2
) -b2(1-
x2
a2
 )
x02-x12
=-
b2
a2

故答案為:
經(jīng)過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的兩端點(diǎn)與橢圓上除這兩個(gè)端點(diǎn)外的任意一點(diǎn)P的連線的斜率之積為定值-
b2
a2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,記二次函數(shù)f(x)=x2+2x+b(x∈R)與兩坐標(biāo)軸有三個(gè)交點(diǎn).經(jīng)過(guò)三個(gè)交點(diǎn)的圓記為C.
(1)求實(shí)數(shù)b的取值范圍;
(2)求圓C的方程;
(3)問(wèn)圓C是否經(jīng)過(guò)定點(diǎn)(其坐標(biāo)與b的無(wú)關(guān))?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)在圓中有結(jié)論“經(jīng)過(guò)圓心的任意弦的兩端點(diǎn)與圓上任意一點(diǎn)(除這兩個(gè)端點(diǎn)外)的連線的斜率之積為定值-1”是正確的.通過(guò)類比,對(duì)于橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,我們有結(jié)論“
經(jīng)過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的兩端點(diǎn)與橢圓上除這兩個(gè)端點(diǎn)外的任意一點(diǎn)P的連線的斜率之積為定值-
b2
a2
經(jīng)過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中心的任意弦的兩端點(diǎn)與橢圓上除這兩個(gè)端點(diǎn)外的任意一點(diǎn)P的連線的斜率之積為定值-
b2
a2
”成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年嘉興一中三模理)  在圓中有結(jié)論“經(jīng)過(guò)圓心的任意弦的兩端點(diǎn)與圓上任意一點(diǎn)(除這兩個(gè)端點(diǎn)外)的連線的斜率之積為定值”是正確的。通過(guò)類比,對(duì)于橢圓,我們有結(jié)論“                                               ”成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

在圓中有結(jié)論“經(jīng)過(guò)圓心的任意弦的兩端點(diǎn)與圓上任意一點(diǎn)(除這兩個(gè)端點(diǎn)外)的連線的斜率之積為定值-1”是正確的.通過(guò)類比,對(duì)于橢圓,我們有結(jié)論“    ”成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案