3.將8個半徑為1實心鐵球溶化成一個大球,則這個大球的半徑是(  )
A.8B.2$\sqrt{2}$C.2D.$\frac{\sqrt{2}}{4}$

分析 根據(jù)等體積法,求出8個半徑為1實心鐵球的總體積,可得答案.

解答 解:8個半徑為1實心鐵球的體積為:8×$\frac{4}{3}π$=$\frac{32}{3}π$,
設(shè)溶成的大球半徑為R,則$\frac{4}{3}π$R3=$\frac{32}{3}π$,
解得:R=2,
故選:C.

點評 本題考查的知識點是球的體積與表面積,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在各項均為正數(shù)的等比數(shù)列{an}中,若a2=1,a7=a5+2a3,則a6=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)集合A={x|x2-5x-6<0},集合B={x|-3<x<2},則A∪B={x|-3<x<6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知平面α,β和直線m,給出條件:①m∥α;②m⊥α;③m?α;④α∥β,當(dāng)滿足條件②④時,有m⊥β.(填所選條件的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.閱讀下面的程序框圖,則輸出的結(jié)果是 ( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,圓O:x2+y2=1,P為直線l:x=$\frac{4}{3}$上一點.
(1)若點P在第一象限,且OP=$\frac{5}{3}$,求過點P圓O的切線方程;
(2)若存在過點P的直線交圓O于點A,B,且B恰為線段AP的中點,求點P縱坐標(biāo)的取值范圍;
(3)設(shè)直線l動點Q,⊙Q與⊙O相外切,⊙Q交L于M、N兩點,對于任意直徑MN,平面上是否存在不在直線L上的定點A,使得∠MAN為定值?若存在,直接寫出點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=2sinxcos|x|(x∈R),則下列敘述錯誤的是( 。
A.f(x)的最大值是1B.f(x)是奇函數(shù)
C.f(x)在[0,1]上是增函數(shù)D.f(x)是以π為最小正周期的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中,周期為π,且在[$\frac{π}{4},\frac{π}{2}$]上為減函數(shù)的是( 。
A.y=sin(x+$\frac{π}{2}$)B.y=cos(x+$\frac{π}{2}$)C.y=cos(2x+$\frac{π}{2}$)D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.盒中裝有5個零件,其中有2個次品.現(xiàn)從中隨機(jī)抽取2個,則恰有1個次品的概率為( 。
A.$\frac{7}{10}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案